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Abstract 
This paper discuss about statistical representation of Brain Cancer in 
America.  Brain cancer morbidity is high and treatment plans like 
chemotherapy, surgical resection of Tumor, Hyperthermia and Radio 
Surgery is key elements for the treatment of patients suffering from 
Brain Cancer. Who and Disease control prevention dataset is used to 
perform analysis. Incidence Rate, Death Rate, Incidence Count and 
Death count in male and female are rising; Classification of Data is 
based on Brain Tumor and other Nervous.  Brain Tumor is a leading 
cause of death and once its diagnosed base on the stage of cancer life 
expectancy is about 5 Years or so. Incidence rate of Brain Cancer in 
age group and gender difference is analyzed based on States. 
Spatially Analytic data is used for the geo-visualization of Cancer. 
Sources of data are from Cancer registries, World Health 
Organization, Health Information Database and remote sensing data. 
Keywords: Brain Cancer, Spatial Analysis, Autocorrelation, 
Fuzzy Logic.  

I. INTRODUCTION 
This research is focus on giving tools and techniques to the 

field of epidemiology to study and provide treatment to Brain 
Cancer patient. This would help to control the disease and 
create the disease model and act on the trends of Brain Cancer. 
Large and highly complex data structure are analysed on grid 
computing environment. Purpose of this research is to provide 
the growth of Brain Cancer in America and find out the 
similarity and differences in the regions of Brain Cancer 
depending upon spatial information. Geo Spatial information 
helps in predicting the spread of disease. Mathematical model 
helps in analysing the Brain cancer Characteristics. Cancer 
Etiology is also represented in spatial form and pattern on 
Treatment [1]. Spatial data refer to data with locational 
attributes. Most commonly, locations are given in Cartesian 
coordinates referenced to the earth's surface. These 
coordinates may describe points, lines, areas or volumes. This 
need not be the only spatial framework; "relative spaces" may 
be defined in which distance is defined in terms of some other 
attribute, such as socio-demographic similarly or 
connectedness along transportation networks [2][3]. There are 
over 600,000 people in the US living with a primary brain 
tumor and over 28,000 of these cases are among children 
under the age of 20.1 

Metastatic brain tumors (cancer that spreads from other parts 
of the body to the brain) occur at some point in 20 to 40% of 
persons with cancer and are the most common type of brain 
tumor. 
 
Over 7% of all reported primary brain tumors in the United 
States are among children under the age of 20. 
 
Each year approximately 210,000 people in the United States 
are diagnosed with a primary or metastatic brain tumor. That's 
over 575 people a day: 

• An estimated 62,930 of these cases are primary 
malignant  and non-malignant tumors. 

• The remaining cases are brain metastases (cancer that  
spreads from other parts of the body to the brain). 

• Among children under age 20, brain tumors are: 
 the most common form of solid tumor  
 the second leading cause of cancer-related deaths, 

following leukemia 
 the second leading cause of cancer-related deaths 

among females 
 

• Among adults, brain tumors are: 
 
 the second leading cause of cancer-related deaths 

among males up to age 39 
 the fifth leading cause of cancer-related deaths 

among women ages 20-39 
 
 

There are over 120 different types of brain tumors, making 
effective treatment very complicated. Because brain tumors 
are located at the control center for thought, emotion and 
movement, their effects on an individual's physical and 
cognitive abilities can be devastating. At present, brain tumors 
are treated by surgery, radiation therapy, and chemotherapy, 
used either individually or in combination. No two brain 
tumors are alike. Prognosis, or expected outcome, is 
dependent on several factors including the type of tumor, 
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location, response to treatment, an individual's age, and 
overall health status. 
 
An estimated 35% of adults living with a primary malignant 
brain or CNS tumor will live five years or longer. 
 
Brain tumors in children are different from those in adults and 
are often treated differently. Although over 72% percent of 
children with brain tumors will survive, they are often left 
with long-term side effects [4]. 

 

II. METHODOLOGY 
Study of spatial autocorrelation analysis supports the 

hypotheses to predict the geo location and volume of 
epidemiological insights. Information pertained from first 
order autocorrelation (Brain Cancer & Nervous) gives the 
pattern of mortality in spatial space.Applied spatial 
autocorrelation to define correlation of a cancer dataset in 
variable array with itself through Fuzzy Topological space. 
Measured the characteristics at one state example California 
are similar or dissimilar to nearby states example Nevada. 
Measure the most probable occurrence of event at one 
location with nearby inter-connected locations.Applied the 
measurement using Joint Count Statistics, Moran’s I , Geary’s 
ratio, General G, Local Index of Spatial Autocorrelation and 
Global Index of Spatial Autocorrelation.Spatial 
Autocorrelation produced positive results with similar values 
Fuzzy Cluster on the map and Negative dissimilar  values 
Fuzzy Cluster on the map. Fuzzy connectedness technique is 
used to measure brain tumor volume; this is also applied on 
brain lesion volume estimation. Multiple Fuzzy spaces are 
defined to layout the computational framework. Fuzzy 
compactness and connectedness are distinct absolute property 
that is used for fuzzy topology. Absolute topology is where all 
subspaces Z Y X of a space X, Z fulfills P (property)  a 
subspace of Y iff Z fulfills P as a subspace of X. We consider 
the following anycast field equations defined over an open 

bounded piece of network and /or feature space dRΩ ⊂ . 
They describe the dynamics of the mean anycast of each of 
p node populations. 

|
1

( ) ( , ) ( , ) [( ( ( , ), ) )]

(1)
( , ), 0,1 ,

( , ) ( , ) [ ,0]

p

i i ij j ij j
j

ext
i

i i

d
l V t r J r r S V t r r r h d r

dt

I r t t i p

V t r t r t T

τ

φ

Ω
=


+ = − −




+ ≥ ≤ ≤
 = ∈ −

∑∫   

 
We give an interpretation of the various parameters and 

functions that appear in (1),Ω  is finite piece of nodes and/or 
feature space and is represented as an open bounded set of 

dR . The vector r  and r  represent points in  Ω . The 

function : (0,1)S R →  is the normalized sigmoid function: 

  

1
( ) (2)

1 z
S z

e−=
+   

It describes the relation between the input rate iv
 of 

population i  as a function of the packets potential, for 

example, 
[ ( )].i i i i iV v S V hσ= = −

 We note V  the p −  

dimensional vector 1( ,..., ).pV V
The p  function 

, 1,..., ,i i pφ =
 represent the initial conditions, see below. We 

note φ  the  p −  dimensional vector 1( ,..., ).pφ φ
 The p  

function 
, 1,..., ,ext

iI i p=
 represent external factors from 

other network areas. We note 
extI  the p −  dimensional 

vector 1( ,..., ).ext ext
pI I

The p p×  matrix of functions 

, 1,...,{ }ij i j pJ J ==
 represents the connectivity between 

populations i  and ,j  see below. The p  real values 

, 1,..., ,ih i p=
 determine the threshold of activity for each 

population, that is, the value of the nodes potential 

corresponding to 50% of the maximal activity. The p real 

positive values 
, 1,..., ,i i pσ =

 determine the slopes of the 

sigmoids at the origin. Finally the p real positive values 

, 1,..., ,il i p=
  determine the speed at which each anycast 

node potential decreases exponentially toward its real value. 

We also introduce the function : ,p pS R R→  defined by 

1 1 1( ) [ ( ( )),..., ( ))],p pS x S x h S hσ σ= − −
 and the 

diagonal p p×  matrix 0 1( ,..., ).pL diag l l=
Is the intrinsic 

dynamics of the population given by the linear response of 

data transfer. 
( )i

d
l

dt
+

 is replaced by 

2( )i

d
l

dt
+

 to use the 

alpha function response. We use 
( )i

d
l

dt
+

 for simplicity 
although our analysis applies to more general intrinsic 
dynamics. For the sake, of generality, the propagation delays 
are not assumed to be identical for all populations, hence they 

are described by a matrix ( , )r rτ  whose element 
( , )ij r rτ

is 

the propagation delay between population j  at r  and 

population i  at .r  The reason for this assumption is that it is 
still unclear from anycast if propagation delays are 
independent of the populations. We assume for technical 

reasons that τ  is continuous, that is 

20( , ).p pC Rτ ×
+∈ Ω
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Moreover packet data indicate that τ  is not a symmetric 

function i.e., 
( , ) ( , ),ij ijr r r rτ τ≠

 thus no assumption is 
made about this symmetry unless otherwise stated. In order to 
compute the righthand side of (1), we need to know the node 

potential factor V  on interval [ ,0].T−  The value of T  is 
obtained by considering the maximal delay: 

 
,

, ( , )
max ( , ) (3)m i j

i j r r
r rτ τ

∈Ω×Ω
=

  

Hence we choose mT τ=
 

 

III.  MATHEMATICAL FRAMEWORK 

A convenient functional setting for the non-delayed packet 

field equations is to use the space 
2( , )pF L R= Ω  which is 

a Hilbert space endowed with the usual inner product: 

 1

, ( ) ( ) (1)
p

i iF
i

V U V r U r dr
Ω

=

=∑∫
  

To give a meaning to (1), we defined the history space 
0([ ,0], )mC C Fτ= −

 with [ ,0]sup ( ) ,
mt t Fτφ φ∈ −=

 
which is the Banach phase space associated with equation (3). 

Using the notation 
( ) ( ), [ ,0],t mV V tθ θ θ τ= + ∈ −

 we 
write (1) as  

.

0 1

0

( ) ( ) ( ) ( ), (2)
,

ext
tV t L V t L S V I t

V Cφ

 = − + +


= ∈   
Where  

 

1 : ,

(., ) ( , (., ))

L C F

J r r r drφ φ τ
Ω

→
 → − ∫

  
Is the linear continuous operator satisfying 

2 21 ( , )
.p pL R

L J ×Ω
≤

 Notice that most of the papers on this 

subject assume Ω  infinite, hence requiring 
.mτ = ∞
   

 
 
Proposition 1.0  If the following assumptions are satisfied. 

1. 
2 2( , ),p pJ L R ×∈ Ω   

2. The external current 
0( , ),extI C R F∈   

3. 2

0 2( , ),sup .p p
mC Rτ τ τ×

+ Ω
∈ Ω ≤

  

Then for any ,Cφ ∈  there exists a unique solution 
1 0([0, ), ) ([ , , )mV C F C Fτ∈ ∞ ∩ − ∞

 to (3) 

Notice that this result gives existence on 
,R+  finite-time 

explosion is impossible for this delayed differential equation. 
Nevertheless, a particular solution could grow indefinitely, we 
now prove that this cannot happen. 
 

Boundedness of SolutiONS 
A valid model of neural networks should only feature 
bounded packet node potentials.  
 
Theorem 1.0 All the trajectories are ultimately bounded by the 

same constant R  if 
max ( ) .ext

t R F
I I t+∈

≡ < ∞
  

Proof :Let us defined :f R C R+× →  as 
2

0 1

1
( , ) (0) ( ) ( ), ( )

2

def
ext F

t t t F

d V
f t V L V L S V I t V t

dt
= − + + =

  

We note 1,...mini p il l==
  

 
2

( , ) ( ) ( ) ( )t F F F
f t V l V t p J I V t≤ − + Ω +

  
Thus,  if 

 

2.
( ) 2 , ( , ) 0

2

def def
F

tF

p J I lR
V t R f t V

l
δ

Ω +
≥ = ≤ − =− <

  
 

Let us show that the open route of F  of center 0 and radius 

, ,RR B
 is stable under the dynamics of equation. We know 

that ( )V t  is defined for all 0t s≥  and that 0f <  on 
,RB∂
 

the boundary of RB
. We consider three cases for the initial 

condition 0.V
If 0 C

V R<
 and set 

sup{ | [0, ], ( ) }.RT t s t V s B= ∀ ∈ ∈
 Suppose that ,T R∈  

then ( )V T  is defined and belongs to 
,RB

 the closure of 

,RB
 because  RB

is closed, in effect to 
,RB∂
 we also have 

2
| ( , ) 0t T TF

d
V f T V

dt
δ= = ≤ − <

 because 
( ) .RV T B∈∂

 

Thus we deduce that for 0ε >  and small enough, 

( ) RV T Bε+ ∈
 which contradicts the definition of T. Thus 

T R∉  and RB
is stable.  Because f<0 on 

, (0)R RB V B∂ ∈∂
 

implies that 
0, ( ) Rt V t B∀ > ∈

. Finally we consider the case 

(0) RV C B∈
. Suppose that   

0, ( ) ,Rt V t B∀ > ∉
 then 
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2
0, 2 ,

F

d
t V

dt
δ∀ > ≤ −

 thus 
( )

F
V t

 is monotonically 
decreasing and reaches the value of R in finite time when 

( )V t  reaches 
.RB∂
 This contradicts our assumption.  Thus  

0 | ( ) .RT V T B∃ > ∈
  

 

Proposition 1.1 : Let s  and t   be measured simple functions 

on .X  for ,E Mε  define 
 

( ) (1)
E

E s dφ µ= ∫   

Then φ  is a measure on M .  

( ) (2)
X X X

s t d s d tdµ µ µ+ = +∫ ∫ ∫   

Proof : If s  and if 1 2, ,...E E
 are disjoint members of M

whose union is ,E  the countable additivity of µ  shows that  

1 1 1

1 1 1

( ) ( ) ( )

( ) ( )

n n

i i i i r
i i r

n

i i r r
r i r

E A E A E

A E E

φ α µ α µ

α µ φ

∞

= = =

∞ ∞

= = =

= ∩ = ∩

= ∩ =

∑ ∑ ∑

∑∑ ∑
  

Also, ( ) 0,ϕ φ =  so that ϕ  is not identically∞ . 

Next, let  s  be as before, let 1
,..., mβ β

 be the distinct values 

of  t,and let 
{ : ( ) }j jB x t x β= =

 If 
,ij i jE A B= ∩

 the

( ) ( ) ( )
ij

i j ijE
s t d Eµ α β µ+ = +∫

  

and 
( ) ( )

ij ij
i ij j ijE E

sd td E Eµ µ α µ β µ+ = +∫ ∫
  Thus (2) 

holds with ijE
 in place of X . Since  X is the disjoint union 

of the sets 
(1 ,1 ),ijE i n j m≤ ≤ ≤ ≤

 the first half of our 
proposition implies that (2) holds. 
 
 

Theorem 1.1: If K  is a compact set in the plane whose 

complement is connected, if f  is a continuous complex 

function on K  which is holomorphic in the interior of , and if 
0,ε >  then there exists a polynomial P  such that 

( ) ( )f z P z ε= <
 for all z Kε .  If the interior of K is 

empty, then part of the hypothesis is vacuously satisfied, and 

the conclusion holds for every ( )f C Kε . Note that  K need 
to be connected. 

Proof: By Tietze’s theorem, f  can be extended to a 
continuous function in the plane, with compact support. We 

fix one such extension and denote it again by f . For any 
0,δ >  let ( )ω δ  be the supremum of the numbers 

2 1( ) ( )f z f z−
 Where 1z

 and 2z
 are subject to the 

condition 2 1z z δ− ≤
. Since f  is uniformly continous, we 

have 0
lim ( ) 0 (1)
δ

ω δ
→

=
 From now on, δ  will be 

fixed. We shall prove that there is a polynomial P  such that  
  

 
( ) ( ) 10,000 ( ) ( ) (2)f z P z z Kω δ ε− <

  
By (1),   this proves the theorem. Our first objective is the 

construction of a function 
' 2( ),cC RεΦ

 such that for all z   

( ) ( ) ( ), (3)

2 ( )
( )( ) , (4)

f z z

z

ω δ
ω δ
δ

− Φ ≤

∂Φ <
  

And 

1 ( )( )
( ) ( ), (5)

X

z d d i
z

ζ ζ η ζ ξ η
π ζ

∂ΦΦ = − = +
−∫∫

  
Where X  is the set of all points in the support of Φ  whose 

distance from the complement of K  does not δ . (Thus  X

contains no point which is “far within” K .) We construct Φ

as the convolution of f  with a smoothing function A. Put 
( ) 0a r =  if ,r δ> put  

 
2

2
2 2

3
( ) (1 ) (0 ), (6)

r
a r r δ

πδ δ
= − ≤ ≤

  
And define 

( ) ( ) (7)A z a z=
  

For all complex z . It is clear that 
' 2( )cA C Rε

. We claim that  

2

3

1, (8)

0, (9)

24 2
, (10)

15

sR

R

R

A

A

A
δ δ

=

∂ =

∂ = <

∫∫

∫∫

∫∫
    

 
The constants are so adjusted in (6) that (8) holds.  (Compute 

the integral in polar coordinates), (9) holds simply because A  
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has compact support. To compute (10), express A∂  in polar 

coordinates, and note that 
0,A

θ
∂ =∂   

 

',A ar
∂ = −∂  

Now define 

2 2

( ) ( ) ( ) ( ) (11)
R R

z f z Ad d A z f d dζ ξ η ζ ζ ξ ηΦ = − = −∫∫ ∫∫
  

Since f  and A  have compact support, so does Φ . Since  
 

2

( ) ( )

[ ( ) ( )] ( ) (12)
R

z f z

f z f z A d dζ ξ ξ η

Φ −

= − −∫∫
 

And ( ) 0A ζ =  if 
,ζ δ>

  (3) follows from (8). The 

difference quotients of A  converge boundedly to the 

corresponding partial derivatives, since 
' 2( )cA C Rε

. Hence 
the last expression in (11) may be differentiated under the 
integral sign, and we obtain 

2

2

2

( )( ) ( )( ) ( )

( )( )( )

[ ( ) ( )]( )( ) (13)

R

R

R

z A z f d d

f z A d d

f z f z A d d

ζ ζ ξ η

ζ ζ ξ η

ζ ζ ξ η

∂Φ = ∂ −

= − ∂

= − − ∂

∫∫

∫∫

∫∫
   

The last equality depends on (9). Now (10) and (13) give (4). 

If we write (13) with xΦ
 and yΦ

 in place of ,∂Φ  we see 

that Φ  has continuous partial derivatives, if we can show that 

0∂Φ =  in ,G  where G  is the set of all z Kε  whose 

distance from the complement of K  exceeds .δ  We shall do 
this by showing that  

 ( ) ( ) ( ); (14)z f z z GεΦ =   

Note that 0f∂ =  in G , since f  is holomorphic there. Now 

if ,z Gε  then z ζ−  is in the interior of K  for all ζ  with 

.ζ δ<
 The mean value property for harmonic functions 

therefore gives, by the first equation in (11), 

2

2

0 0

0

( ) ( ) ( )

2 ( ) ( ) ( ) ( ) (15)

i

R

z a r rdr f z re d

f z a r rdr f z A f z

δ π θ

δ

θ

π

Φ = −

= = =

∫ ∫

∫ ∫∫
  

For all z Gε  , we have now proved (3), (4), and (5) The 

definition of X  shows that X is compact and that X  can be 

covered by finitely many open discs 1
,..., ,nD D

 of radius 
2 ,δ  whose centers are not in .K  Since 

2S K−  is 

connected, the center of each j
D

 can be joined to ∞  by a 

polygonal path in 
2S K− . It follows that each jD

contains a 

compact connected set 
,jE
 of diameter at least 2 ,δ  so that 

2
jS E−

 is connected and so that 
.jK E φ∩ =

  with 

2r δ= . There are functions 
2( )j jg H S Eε −

 and 

constants jb
 so that the inequalities. 

 

2

2

50
( , ) , (16)

1 4,000
( , ) (17)

j

j

Q z

Q z
z z

ζ
δ

δζ
ζ ζ

<

− <
− −

   

Hold for jz E∉
 and 

,jDζ ∈
 if  

2( , ) ( ) ( ) ( ) (18)j j j jQ z g z b g zζ ζ= + −
  

Let Ω  be the complement of 1
... .nE E∪ ∪

 Then Ω is an 

open set which contains .K  Put 1 1X X D= ∩
 and 

1 1( ) ( ... ),j j jX X D X X −= ∩ − ∪ ∪
 for 2 ,j n≤ ≤   

Define  

( , ) ( , ) ( , ) (19)j jR z Q z X zζ ζ ζε ε= Ω
  

And 
1

( ) ( ) ( ) ( , ) ( 2 0 )

( )
X

F z R z d d

z

ζ ζ ζ η
π

ε

= ∂ Φ

Ω

∫∫

  
Since,  

1

1
( ) ( )( ) ( , ) , (21)

i

j
j X

F z Q z d dζ ζ ξ η
π=

= ∂Φ∑ ∫∫
  

(18) shows that F  is a finite linear combination of the 

functions jg
 and 

2
jg
. Hence ( ).F Hε Ω  By (20), (4), and (5) 

we have  

2 ( )
( ) ( ) | ( , )

1
| ( ) (22)

X

F z z R z

d d z
z

ω δ ζ
πδ

ξ η ε
ζ

− Φ <

− Ω
−

∫∫
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Observe that the inequalities (16) and (17) are valid with R  

in place of jQ
 if Xζ ε  and .z ε Ω Now fix  .z ε Ω , put 

,iz e θζ ρ= +  and estimate the integrand in (22) by (16) if 
4 ,ρ δ<  by (17) if 4 .δ ρ≤   The integral in (22) is then 

seen to be less than the sum of 

4

0

50 1
2 808 (23)d

δ
π ρ ρ πδ

δ ρ
 + = 
 

∫
  

And  
2

24

4,000
2 2,000 . (24)d

δ

δπ ρ ρ πδ
ρ

∞
=∫

  
Hence (22) yields 

( ) ( ) 6,000 ( ) ( ) (25)F z z zω δ ε− Φ < Ω
  

Since ( ), ,F H Kε Ω ⊂ Ω  and 
2S K−  is connected, 

Runge’s theorem shows that F  can be uniformly 

approximated on K  by polynomials. Hence (3) and (25) 
show that (2) can be satisfied. This completes the proof. 
 

Lemma 1.0 : Suppose 
' 2( ),cf C Rε

 the space of all 
continuously differentiable functions in the plane, with 
compact support. Put  

1
(1)

2
i

x y

 ∂ ∂∂ = + ∂ ∂    
Then the following “Cauchy formula” holds: 

2

1 ( )( )
( )

( ) (2)
R

f
f z d d

z

i

ζ ξ η
π ζ

ζ ξ η

∂= −
−

= +

∫∫

  
Proof: This may be deduced from Green’s theorem. However, 
here is a simple direct proof: 

Put ( , ) ( ), 0,ir f z re rθϕ θ θ= + >  real 

 If ,iz re θζ = +  the chain rule gives 

1
( )( ) ( , ) (3)

2
i i

f e r
r r

θζ ϕ θ
θ

∂ ∂ ∂ = + ∂ ∂    

The right side of (2) is therefore equal to the limit, as 0,ε →  
of 

 

2

0

1
(4)

2

i
d dr

r r

π

ε

ϕ ϕ θ
θ

∞ ∂ ∂ − + ∂ ∂ 
∫ ∫

  
 
 

For each 0,r ϕ>  is periodic in ,θ  with period 2π . The 

integral of /ϕ θ∂ ∂  is therefore 0, and (4) becomes 

2 2

0 0

1 1
( , ) (5)

2 2
d dr d

r

π π

ε

ϕθ ϕ ε θ θ
π π

∞ ∂− =
∂∫ ∫ ∫

  

As 0, ( , ) ( )f zε ϕ ε θ→ →  uniformly.  This gives (2)  
 

If X aα ∈  and 
[ ]1,... nX k X Xβ ∈

, then 

X X X aα β α β+= ∈  , and so A  satisfies the condition ( )∗ . 
Conversely, 

,

( )( ) ( ),
nA

c X d X c d X finitesumsα β α β
α β α β

α α ββ

+

∈ ∈

=∑ ∑ ∑
�   

and so if A  satisfies ( )∗ , then the subspace generated by the 

monomials ,X aα α ∈ , is an ideal. The proposition gives a 

classification of the monomial ideals in 
[ ]1,... nk X X

: they 

are in one to one correspondence with the subsets A  of 
n�  

satisfying ( )∗ . For example, the monomial ideals in 
[ ]k X

 

are exactly the ideals ( ), 1nX n ≥ , and the zero ideal 

(corresponding to the empty setA ). We write 
|X Aα α ∈

 

for the ideal corresponding to A  (subspace generated by the 

,X aα α ∈ ). 
 

LEMMA 1.1.  Let S  be a subset of 
n� . The the ideal a  

generated by ,X Sα α ∈  is the monomial ideal 
corresponding to   

{ }| ,
df

n nA some Sβ β α α∈ − ∈ ∈= � �
  

Thus, a monomial is in a  if and only if it is divisible by one 

of the , |X Sα α ∈  

PROOF.   Clearly A  satisfies 
( )∗

, and 
|a X Aβ β⊂ ∈

. 

Conversely, if Aβ ∈ , then 
nβ α− ∈�  for some Sα ∈ , 

and X X X aβ α β α−= ∈ . The last statement follows from 

the fact that | nX Xα β β α⇔ − ∈� . Let 
nA ⊂ �  

satisfy 
( )∗

. From the geometry of  A , it is clear that there is 

a finite set of elements 
{ }1,... sS α α=

  of A such that  

{ }2| ,n
i iA some Sβ β α α= ∈ − ∈ ∈� �

 (The 
'i sα
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are the corners of A ) Moreover, 
|

df

a X Aα α ∈=  is 

generated by the monomials 
,i

iX Sα α ∈
. 

 
DEFINITION 1.0.   For a nonzero ideal a  in 

[ ]1 ,..., nk X X
, we let ( ( ))LT a  be the ideal generated by  

{ }( ) |LT f f a∈
  

 

LEMMA 1.2   Let a  be a nonzero ideal in  
[ ]1 ,..., nk X X

; 

then ( ( ))LT a is a monomial ideal, and it equals 

1( ( ),..., ( ))nLT g LT g
 for some 1,..., ng g a∈

. 

PROOF.   Since  ( ( ))LT a  can also be described as the ideal 
generated by the leading monomials (rather than the leading 
terms) of elements of a . 
 

THEOREM 1.2.  Every ideal a  in 
[ ]1 ,..., nk X X

is 

finitely generated; more precisely, 1( ,..., )sa g g=
 where 

1,..., sg g
are any elements of a  whose leading terms 

generate ( )LT a   

PROOF.   Let f a∈ . On applying the division algorithm, 
we find 

[ ]1 1 1... , , ,...,s s i nf a g a g r a r k X X= + + + ∈
 , 

where either 0r =  or no monomial occurring in it is divisible 

by any 
( )iLT g

. But i i
r f a g a= − ∈∑ , and therefore 

1( ) ( ) ( ( ),..., ( ))sLT r LT a LT g LT g∈ =
, implies that 

every monomial occurring in r  is divisible by one in 

( )iLT g
. Thus 0r = , and 1( ,..., )sg g g∈

. 
 

DEFINITION 1.1.   A finite subset 
{ }1,| ..., sS g g=

 of an 

ideal a  is a standard (

..

( )Gr obner bases for a  if 

1( ( ),..., ( )) ( )sLT g LT g LT a=
. In other words, S is a 

standard basis if the leading term of every element of a is 

divisible by at least one of the leading terms of the ig
. 

 

THEOREM 1.3  The ring 1[ ,..., ]nk X X
 is Noetherian i.e., 

every ideal is finitely generated. 

 

PROOF. For  1,n =  [ ]k X  is a principal ideal domain, 
which means that every ideal is generated by single element. 
We shall prove the theorem by induction on n . Note that the 

obvious map 1 1 1[ ,... ][ ] [ ,... ]n n nk X X X k X X− →
 is an 

isomorphism – this simply says that every polynomial f  in 

n  variables 1,... nX X
 can be expressed uniquely as a 

polynomial in nX
 with coefficients in 1[ ,..., ]nk X X

: 

1 0 1 1 1 1( ,... ) ( ,... ) ... ( ,... )r
n n n r nf X X a X X X a X X− −= + +

  
Thus the next lemma will complete the proof 
 

LEMMA 1.3.  If A  is Noetherian, then so also is [ ]A X   
PROOF.          For a polynomial 

1
0 1 0( ) ... , , 0,r r

r if X a X a X a a A a−= + + + ∈ ≠
  

r  is called the degree of f , and 0a
 is its leading coefficient. 

We call 0 the leading coefficient of the polynomial 0. 

 Let a  be an ideal in [ ]A X . The leading coefficients 

of the polynomials in a  form an ideal 
'a  in A ,  and since 

A  is Noetherian, 
'a will be finitely generated. Let 1

,..., mg g
 

be elements of a  whose leading coefficients generate 
'a , and 

let r be the maximum degree of i
g

. Now let ,f a∈  and 

suppose f  has degree s r> , say, ...sf aX= +  Then 
'a a∈  , and so we can write 

, ,i ii

i i

a ba b A

a leading coefficient of g

= ∈

=
∑

  
Now 

, deg( ),is r

i i i if b g X r g
−− =∑ has degree deg( )f<  . 

By continuing in this way, we find that 

1mod( ,... )t mf f g g≡
 With tf  a polynomial of 

degree t r< . For each d r< , let da
 be the subset of A  

consisting of 0 and the leading coefficients of all polynomials 

in a  of degree ;d  it is again an ideal in  A . Let 

,1 ,,...,
dd d mg g

 be polynomials of degree d  whose leading 

coefficients generate d
a

. Then the same argument as above 

shows that any polynomial d
f

 in a  of degree d  can be 

written 1 ,1 ,mod( ,... )
dd d d d mf f g g−≡

 With 1df −  of 
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degree 1d≤ − . On applying this remark repeatedly we find 

that 1 01,1 1, 0,1 0,( ,... ,... ,... )
rt r r m mf g g g g
−− −∈

 Hence 

       1 01 1,1 1, 0,1 0,( ,... ,... ,..., ,..., )
rt m r r m mf g g g g g g
−− −∈

 

 and so the polynomials 01 0,,..., mg g
 generate a   

 
One of the great successes of category theory in computer 
science has been the development of a “unified theory” of the 
constructions underlying denotational semantics. In the 

untyped λ -calculus,  any term may appear in the function 
position of an application. This means that a model D of the 
λ -calculus must have the property that given a term t  whose 

interpretation is ,d D∈  Also, the interpretation of a 

functional abstraction like xλ . x  is most conveniently 

defined as a function from Dto D  , which must then be 

regarded as an element of D. Let 
[ ]: D D Dψ → →

 be the 
function that picks out elements of D to represent elements of 

[ ]D D→
 and 

[ ]: D D Dφ → →
 be the function that 

maps elements of D to functions of D.  Since ( )fψ  is 

intended to represent the function f  as an element of D, it 

makes sense to require that ( ( )) ,f fφ ψ =  that is, 

[ ]D Do idψ ψ →=
  Furthermore, we often want to view every 

element of D as representing some function from D to D and 
require that elements representing the same function be equal 
– that is   

( ( ))

D

d d

or

o id

ψ ϕ

ψ φ

=

=
  

The latter condition is called extensionality. These conditions 

together imply that andφ ψ  are inverses--- that is, D is 
isomorphic to the space of functions from D to D  that can be 
the interpretations of functional abstractions: 

[ ]D D D≅ →
 .Let us suppose we are working with the 

untyped calculusλ − , we need a solution ot the equation 

[ ],D A D D≅ + →
 where A is some predetermined 

domain containing interpretations for elements of C.  Each 
element of D corresponds to either an element of A or an 

element of 
[ ],D D→

 with a tag. This equation can be 
solved by finding least fixed points of the function 

[ ]( )F X A X X= + →
 from domains to domains --- that is, 

finding domains X  such that 
[ ],X A X X≅ + →

 and such 
that for any domain Y also satisfying this equation, there is an 
embedding of X to Y  --- a pair of maps 

R

f

f

X Y�
  

Such that   
R

X

R
Y

f o f id

f o f id

=

⊆   
 

Where f g⊆  means that f approximates g  in some 
ordering representing their information content. The key shift 
of perspective from the domain-theoretic to the more general 
category-theoretic approach lies in considering F not as a 
function on domains, but as a functor on a category of 
domains. Instead of a least fixed point of the function, F. 
 

Definition 1.3: Let K be a category and :F K K→  as a 
functor. A fixed point of F is a pair (A,a), where A is a K-

object and : ( )a F A A→  is an isomorphism. A prefixed 
point of F is a pair (A,a), where A is a K-object and a is any 
arrow from F(A) to A 

Definition 1.4 : An chainω −  in a category K  is a diagram 
of the following form: 

1 2

1 2 .....
of f f

oD D D∆ = → → →   

Recall that a cocone µ  of an chainω − ∆  is a K-object X 

and a collection of K –arrows 
{ }: | 0i iD X iµ → ≥

 such 

that 1i i io fµ µ +=
 for all 0i ≥ . We sometimes write 

: Xµ ∆ →  as a reminder of the arrangement of 'sµ  

components Similarly, a colimit : Xµ ∆ → is a cocone with 

the property that if 
': Xν ∆ →  is also a cocone then there 

exists a unique mediating arrow 
':k X X→  such that for all 

0,, i ii v k oµ≥ =
. Colimits of chainsω −  are sometimes 

referred to as limco itsω − . Dually, an 
op chainω −  in K 

is a diagram of the following form: 
1 2

1 2 .....
of f f

oD D D∆ = ← ← ←  A cone : Xµ → ∆  of an 
op chainω − ∆  is a K-object X and a collection of K-arrows 

{ }: | 0i iD iµ ≥
 such that for all 10, i i ii f oµ µ +≥ =

. An  
opω -limit of an 

op chainω −  ∆  is a cone : Xµ → ∆  
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with the property that if 
': Xν → ∆ is also a cone, then there 

exists a unique mediating arrow 
':k X X→  such that for 

all 
0, i ii okµ ν≥ =

 . We write k⊥
 (or just ⊥ ) for the 

distinguish initial object of K, when it has one, and A⊥→  

for the unique arrow from ⊥  to each K-object A. It is also 

convenient to write 

1 2

1 2 .....
f f

D D−∆ = → → to denote all of 

∆  except oD
 and 0f . By analogy, µ

−
 is 

{ }| 1i iµ ≥
. For 

the images of ∆  and µ  under F we write  
1 2( ) ( ) ( )

1 2( ) ( ) ( ) ( ) .....
oF f F f F f

oF F D F D F D∆ = → → →  

and 
{ }( ) ( ) | 0iF F iµ µ= ≥

  

We write 
iF  for the i-fold iterated composition of F – that is, 

1 2( ) , ( ) ( ), ( ) ( ( ))oF f f F f F f F f F F f= = =  ,etc. 
With these definitions we can state that every monitonic 
function on a complete lattice has a least fixed point: 
 

Lemma 1.4. Let K  be a category with initial object ⊥  and let 

:F K K→  be a functor. Define the chainω − ∆  by 
2! ( ) (! ( )) (! ( ))

2( ) ( ) .........
F F F F F

F F
⊥→ ⊥ ⊥→ ⊥ ⊥→ ⊥

∆ =⊥ ⊥ ⊥→ → →   

If both : Dµ ∆ →  and ( ) : ( ) ( )F F F Dµ ∆ → are 
colimits, then (D,d) is an intial F-algebra, where

: ( )d F D D→   is the mediating arrow from ( )F µ   to the 

cocone µ
−

  
 
 
Theorem 1.4 Let a DAG G given in which each node is a 
random variable, and let a discrete conditional probability 
distribution of each node given values of its parents in G be 
specified. Then the product of these conditional distributions 
yields a joint probability distribution P of the variables, and 
(G,P) satisfies the Markov condition. 
 
Proof. Order the nodes according to an ancestral ordering. Let 

1 2, ,........ nX X X
be the resultant ordering. Next define.  

 

1 2 1 1

2 2 1 1

( , ,.... ) ( | ) ( | )...

.. ( | ) ( | ),
n n n n nP x x x P x pa P x Pa

P x pa P x pa
− −=

 

Where iPA
is the set of parents of iX

of in G and 

( | )i iP x pa
is the specified conditional probability 

distribution. First we show this does indeed yield a joint 

probability distribution. Clearly, 1 20 ( , ,... ) 1nP x x x≤ ≤
 for 

all values of the variables. Therefore, to show we have a joint 
distribution, as the variables range through all their possible 
values, is equal to one. To that end, Specified conditional 
distributions are the conditional distributions they notationally 
represent in the joint distribution. Finally, we show the 
Markov condition is satisfied. To do this, we need show for 
1 k n≤ ≤  that  

whenever 

( ) 0, ( | ) 0

( | ) 0

( | , ) ( | ),

k k k

k k

k k k k k

P pa if P nd pa

and P x pa

then P x nd pa P x pa

≠ ≠
≠
=

 

Where kND
is the set of nondescendents of k

X
of in G. 

Since k kPA ND⊆
, we need only show 

( | ) ( | )k k k kP x nd P x pa=
. First for a given k , order the 

nodes so that all and only nondescendents of kX
precede kX

in the ordering. Note that this ordering depends on k , 
whereas the ordering in the first part of the proof does not. 
Clearly then 

 

{ }

{ }

1 2 1

1 2

, ,....

, ,....

k k

k k k n

ND X X X

Let

D X X X

−

+ +

=

=
 

follows kd∑
   

 
 

We define the 
thm cyclotomic field to be the field 

[ ] / ( ( ))mQ x xΦ
 Where 

( )m xΦ
is the 

thm cyclotomic 

polynomial. 
[ ] / ( ( ))mQ x xΦ

 
( )m xΦ

 has degree ( )mϕ

over Q since 
( )m xΦ

has degree ( )mϕ . The roots of 

( )m xΦ
 are just the primitive 

thm roots of unity, so the 

complex embeddings of 
[ ] / ( ( ))mQ x xΦ

are simply the 
( )mϕ maps  

[ ]: / ( ( )) ,

1 , ( , ) 1,

( ) ,

k m

k
k m

Q x x C

k m k m where

x

σ

σ ξ

Φ
≤ =

=

a

p
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mξ
being our fixed choice of primitive 

thm root of unity. Note 

that 
( )k

m mQξ ξ∈
for every ;k it follows that 

( ) ( )k
m mQ Qξ ξ=

for all k relatively prime to m . In 

particular, the images of the iσ
coincide, so 

[ ] / ( ( ))mQ x xΦ
is Galois over Q . This means that we can 

write 
( )mQ ξ

for 
[ ] / ( ( ))mQ x xΦ

without much fear of 
ambiguity; we will do so from now on, the identification 

being 
.m xξ a
One advantage of this is that one can easily 

talk about cyclotomic fields being extensions of one 
another,or intersections or compositums; all of these things 

take place considering them as subfield of .C  We now 
investigate some basic properties of cyclotomic fields. The 
first issue is whether or not they are all distinct; to determine 
this, we need to know which roots of unity lie in 

( )mQ ξ
.Note, for example, that if m is odd, then mξ−

is a 

2 thm root of unity. We will show that this is the only way in 

which one can obtain any non-
thm roots of unity. 

 

LEMMA 1.5   If m dividesn , then 
( )mQ ξ

 is contained in 

( )nQ ξ
 

PROOF. Since 
,

n
m

mξ ξ=
we have 

( ),m nQξ ξ∈
so the 

result is clear 
 
LEMMA 1.6   If m and n are relatively prime, then  

  
( , ) ( )m n nmQ Qξ ξ ξ=

 
and 

           
( ) ( )m nQ Q Qξ ξ∩ =

 

(Recall the 
( , )m nQ ξ ξ

 is the compositum of 

( ) ( ) )m nQ and Qξ ξ
 

 

PROOF. One checks easily that m nξ ξ
is a primitive 

thmn root 
of unity, so that  

( ) ( , )mn m nQ Qξ ξ ξ⊆
 

[ ] [ ][ ]( , ) : ( ) : ( :

( ) ( ) ( );
m n m nQ Q Q Q Q Q

m n mn

ξ ξ ξ ξ
ϕ ϕ ϕ

≤
= =  

Since 
[ ]( ) : ( );mnQ Q mnξ ϕ=

this implies that 

( , ) ( )m n nmQ Qξ ξ ξ=
 We know that 

( , )m nQ ξ ξ
has degree 

( )mnϕ  over  Q , so we must have  

 
[ ]( , ) : ( ) ( )m n mQ Q nξ ξ ξ ϕ=

 
and 

[ ]( , ) : ( ) ( )m n mQ Q mξ ξ ξ ϕ=
 

 

[ ]( ) : ( ) ( ) ( )m m nQ Q Q mξ ξ ξ ϕ∩ ≥
 

And thus that 
( ) ( )m nQ Q Qξ ξ∩ =

 
 

PROPOSITION 1.2 For any m and n  
 

[ ],( , ) ( )m n m nQ Qξ ξ ξ=
 

And  

( , )( ) ( ) ( );m n m nQ Q Qξ ξ ξ∩ =
 

here 
[ ],m n

and 
( ),m n

denote the least common multiple and 

the greatest common divisor of m and ,n respectively. 
 

PROOF.    Write 
1 1

1 1...... ....k ke fe f
k km p p and p p=

where 

the ip
are distinct primes. (We allow i ie or f

to be zero) 

1 2
1 2

1 2
1 2

1 1
1 12

1 1
1 1

max( ) max( )1, ,1
1 1

( ) ( ) ( )... ( )

( ) ( ) ( )... ( )

( , ) ( )........ ( ) ( )... ( )

( ) ( )... ( ) ( )

( )....... (

e e ek
k

f f fk
k

e e f fk k
k

e f e fk k
k k

e ef k fk

m p p p

n p p p

m n p pp p

p p p p

p p

Q Q Q Q

and

Q Q Q Q

Thus

Q Q Q Q Q

Q Q Q Q

Q Q

ξ ξ ξ ξ

ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ

ξ ξ

=

=

=

=

=

[ ]

max( ) max( )1, ,1
1 1........

,

)

( )

( );

e ef k fkp p

m n

Q

Q

ξ

ξ

=

=
 

 
An entirely similar computation shows that 

( , )( ) ( ) ( )m n m nQ Q Qξ ξ ξ∩ =
 

 
Mutual information measures the information transferred 

when ix
 is sent and iy

 is received, and is defined as 
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2

( )
( , ) log (1)

( )

i

i
i i

i

xP y
I x y bits

P x
=

 

In a noise-free channel, each iy
is uniquely connected to the 

corresponding ix
 , and so they constitute an input –output 

pair 
( , )i ix y

 for which 

 
2

1
( ) 1 ( , ) log

( )
i

i j
j i

xP and I x yy P x
= =

bits; that is, the 
transferred information is equal to the self-information that 

corresponds to the input i
x

 In a very noisy channel, the 

output iy
and input ix

would be completely uncorrelated, and 

so 
( ) ( )i

i
j

xP P xy =
 and also 

( , ) 0;i jI x y =
that is, there is 

no transference of information. In general, a given channel 
will operate between these two extremes. The mutual 
information is defined between the input and the output of a 
given channel. An average of the calculation of the mutual 
information for all input-output pairs of a given channel is the 
average mutual information: 

2
. .

(
( , ) ( , ) ( , ) ( , ) log

( )

i

j
i j i j i j

i j i j i

xP y
I X Y P x y I x y P x y

P x

 
 

= =  
 
 

∑ ∑

 bits per 
symbol . This calculation is done over the input and output 
alphabets. The average mutual information. The following 
expressions are useful for modifying the mutual information 
expression: 

( , ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

ji
i j j i

j i

j
j i

ii

i
i j

ji

yxP x y P P y P P xy x

y
P y P P xx

xP x P P yy

= =

=

=

∑

∑
 

Then 

.

2
.

2
.

2
.

2

2

( , ) ( , )

1
( , ) log

( )

1
( , ) log

( )

1
( , ) log

( )

1
( ) ( ) log

( )

1
( ) log ( )

( )

( , ) ( ) ( )

i j
i j

i j
i j i

i j
ii j

j

i j
i j i

i
j

ji i

i
i i

I X Y P x y

P x y
P x

P x y
xP y

P x y
P x

xP P yy P x

P x H X
P x

XI X Y H X H Y

=

 
=  

 

 
 

−  
 
 

 
 
 

 =   

=

= −

∑

∑

∑

∑

∑

∑

 

Where 

2,

1
( ) ( , ) log

( )
i ji j

i

j

XH P x yY xP y

=∑

 is 
usually called the equivocation. In a sense, the equivocation 
can be seen as the information lost in the noisy channel, and is 
a function of the backward conditional probability. The 

observation of an output symbol jy
provides 

( ) ( )XH X H Y−
 bits of information. This difference is the 

mutual information of the channel. Mutual Information: 
Properties Since 

( ) ( ) ( ) ( )ji
j i

j i

yxP P y P P xy x=
 

The mutual information fits the condition 
( , ) ( , )I X Y I Y X=  

And by interchanging input and output it is also true that 

( , ) ( ) ( )YI X Y H Y H X= −
 

Where 

2

1
( ) ( ) log

( )j
j j

H Y P y
P y

=∑
 

This last entropy is usually called the noise entropy. Thus, the 
information transferred through the channel is the difference 
between the output entropy and the noise entropy. 
Alternatively, it can be said that the channel mutual 
information is the difference between the number of bits 
needed for determining a given input symbol before knowing 
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the corresponding output symbol, and the number of bits 
needed for determining a given input symbol after knowing 
the corresponding output symbol 

( , ) ( ) ( )XI X Y H X H Y= −
 

As the channel mutual information expression is a difference 
between two quantities, it seems that this parameter can adopt 
negative values. However, and is spite of the fact that for 

some 
, ( / )j jy H X y

 can be larger than ( )H X , this is not 
possible for the average value calculated over all the outputs: 

2 2
, ,

( ) ( , )
( , ) log ( , ) log

( ) ( ) ( )

i

j i j
i j i j

i j i ji i j

xP y P x y
P x y P x y

P x P x P y
=∑ ∑

 
Then 

,

( ) ( )
( , ) ( , ) 0

( , )
i j

i j
i j i j

P x P y
I X Y P x y

P x y
− = ≤∑

 
Because this expression is of the form 

2
1

log ( ) 0
M

i
i

i i

Q
P

P=

≤∑
 

The above expression can be applied due to the factor 

( ) ( ),i jP x P y
which is the product of two probabilities, so 

that it behaves as the quantity i
Q

, which in this expression is 

a dummy variable that fits the condition 
1ii

Q ≤∑ . It can be 
concluded that the average mutual information is a non-
negative number. It can also be equal to zero, when the input 
and the output are independent of each other. A related 
entropy called the joint entropy is defined as 

2
,

2
,

2
,

1
( , ) ( , ) log

( , )

( ) ( )
( , ) log

( , )

1
( , ) log

( ) ( )

i j
i j i j

i j
i j

i j i j

i j
i j i j

H X Y P x y
P x y

P x P y
P x y

P x y

P x y
P x P y

=

=

+

∑

∑

∑
 

 
 
Theorem 1.5: Entropies of the binary erasure channel (BEC) 
The BEC is defined with an alphabet of two inputs and three 
outputs, with symbol probabilities.  

1 2( ) ( ) 1 ,P x and P xα α= = −
and transition 

probabilities 

 

3 2

2 1

3

1

1

2

3

2

( ) 1 ( ) 0,

( ) 0

( )

( ) 1

y yP p and Px x

yand P x

yand P px

yand P px

= − =

=

=

= −
 

 
Lemma 1.7. Given an arbitrary restricted time-discrete, 
amplitude-continuous channel whose restrictions are 

determined by sets n
F

and whose density functions exhibit no 
dependence on the states , let n be a fixed positive integer, 

and ( )p x an arbitrary probability density function on 

Euclidean n-space. ( | )p y x for the density 

1 1( ,..., | ,... )n n np y y x x
and nF for F

. For any real 
number a, let 

( | )
( , ) : log (1)

( )

p y x
A x y a

p y

 
= > 
   

Then for each positive integeru , there is a code ( , , )u n λ
such that 

{ } { }( , ) (2)aue P X Y A P X Fλ −≤ + ∉ + ∉
 

Where 
{ }

{ }

( , ) ... ( , ) , ( , ) ( ) ( | )

... ( )

A

F

P X Y A p x y dxdy p x y p x p y x

and

P X F p x dx

∈ = =

∈ =

∫ ∫

∫ ∫  

Proof: A sequence 
(1)x F∈ such that 

{ }
{ }

1
(1)| 1

: ( , ) ;

x

x

P Y A X x

where A y x y A

ε

ε

∈ = ≥ −

=
 

Choose the decoding set 1
B

to be (1)x
A

. Having chosen 
(1) ( 1),........, kx x −

and 1 1,..., kB B − , select 
kx F∈ such that 

( )

1
( )

1

| 1 ;k

k
k

ix
i

P Y A B X x ε
−

=

 
∈ − = ≥ − 

 
U

  

Set 
( )

1

1k

k

k ix i
B A B

−

=
= −U , If the process does not terminate 

in a finite number of steps, then the sequences 
( )ix and 

decoding sets 
, 1,2,..., ,iB i u=

form the desired code. Thus 
assume that the process terminates after t  steps. (Conceivably 

0t = ). We will show t u≥  by showing that  

{ } { }( , )ate P X Y A P X Fε −≤ + ∉ + ∉
. We proceed as 

follows.  



International Journal of Engineering Sciences Paradigms and Researches, Vol. 02, Issue 01, December 2012 
ISSN (Online): 2319-6564 
www.ijesonline.com 

 

IJESPR 
www.ijesonline.com 

41 
 

Let 

{ }
1

( , )

. ( 0, ).

( , ) ( , )

( ) ( | )

( ) ( | ) ( )

x

x

t

jj

x y A

x y A

x y B A x

B B If t take B Then

P X Y A p x y dx dy

p x p y x dy dx

p x p y x dy dx p x

φ
=

∈

∈

∈ ∩

= = =

∈ =

=

= +

∫

∫ ∫

∫ ∫ ∫

U

 
 
 

Algorithms 
Let A be a ring. Recall that an ideal a in A is a subset such 
that a is subgroup of A regarded as a group under addition; 

 ,a a r A ra A∈ ∈ ⇒ ∈    
The ideal generated by a subset S of A is the intersection of all 
ideals A containing a ----- it is easy to verify that this is in fact 
an ideal, and that it consist of all finite sums of the form 

i i
r s∑  with 

,i ir A s S∈ ∈
. When 

{ }1,....., mS s s=
, we 

shall write 1( ,....., )ms s
for the ideal it generates. 

Let a and b be ideals in A. The set 
{ }| ,a b a a b b+ ∈ ∈

 is 

an ideal, denoted by a b+ . The ideal generated by  

{ }| ,ab a a b b∈ ∈
is denoted by ab . Note that 

ab a b⊂ ∩ . Clearly ab consists of all finite sums i i
a b∑  

with ia a∈
 and ib b∈

, and if 1( ,..., )ma a a=
 and 

1( ,..., )nb b b=
, then 1 1( ,..., ,..., )i j m nab a b a b a b=

.Let a  
be an ideal of A. The set of cosets of a in A forms a ring 

/A a , and a a a+a  is a homomorphism : /A A aφ a . 

The map 
1( )b bφ−a  is a one to one correspondence 

between the ideals of /A a  and the ideals of A  containinga

An ideal p  if prime if p A≠  and ab p a p∈ ⇒ ∈  or 
b p∈ . Thus p  is prime if and only if /A p  is nonzero and 

has the property that  0, 0 0,ab b a= ≠ ⇒ =   i.e., 
/A p is an integral domain. An ideal m  is maximal if 

|m A≠  and there does not exist an ideal n  contained strictly 

between m and A . Thus m is maximal if and only if /A m  
has no proper nonzero ideals, and so is a field. Note that m  

maximal ⇒  m prime. The ideals of A B×  are all of the 

form a b× , with a  and b  ideals in A  and B . To see this, 

note that if c  is an ideal in  A B×  and ( , )a b c∈ , then 
( ,0) ( , )(1,0)a a b c= ∈  and (0, ) ( , )(0,1)b a b c= ∈ . This 

shows that c a b= ×  with  

{ }| ( , )a a a b c some b b= ∈ ∈
  

and  

  
{ }| ( , )b b a b c some a a= ∈ ∈

 
 

Let A  be a ring. An A -algebra is a ring B  together with a 

homomorphism 
:Bi A B→

. A homomorphism of A -

algebra B C→  is a homomorphism of rings : B Cϕ →  

such that 
( ( )) ( )B Ci a i aϕ =

 for all . An  A -algebra 
B is said to be finitely generated ( or of finite-type over A) if 

there exist elements 1
,..., nx x B∈

 such that every element of 

B can be expressed as a polynomial in the ix
 with 

coefficients in ( )i A , i.e., such that the homomorphism 

[ ]1,..., nA X X B→
 sending iX

 to  ix
is surjective.  A ring 

homomorphism A B→  is finite, and B  is finitely 

generated as an A-module. Let k  be a field, and let A be a 
k -algebra. If 1 0≠  in A , then the map k A→  is injective, 

we can identify k with its image, i.e., we can regard k as a 

subring ofA  . If 1=0 in a ring R, the R is the zero ring, i.e., 

{ }0R =
. Polynomial rings.  Let  k  be a field. A monomial 

in 1,..., nX X
 is an expression of the form 

1
1 ... ,naa

n jX X a N∈
 . The total degree of the 

monomial is ia∑ . We sometimes abbreviate it by 

1, ( ,..., ) n
nX a aα α = ∈�

. The elements of the polynomial 

ring 
[ ]1,..., nk X X

 are finite sums
1

1 1.... 1 ....... , ,n

n n

aa
a a n a a jc X X c k a∈ ∈∑ �

   
With the obvious notions of equality, addition and 
multiplication. Thus the monomials from basis for  

[ ]1,..., nk X X
 as a k -vector space. The ring 

[ ]1,..., nk X X
is an integral domain, and the only units in it 

are the nonzero constant polynomials. A polynomial 

1( ,..., )nf X X
 is irreducible if it is nonconstant and has only 

the obvious factorizations, i.e., f gh g= ⇒  or h  is 

a A∈
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constant. Division in 
[ ]k X

. The division algorithm allows 

us to divide a nonzero polynomial into another: let f  and g  

be polynomials in 
[ ]k X

with 0;g ≠  then there exist unique 

polynomials 
[ ],q r k X∈

 such that f qg r= +  with either 
0r =  or degr  < degg . Moreover, there is an algorithm for 

deciding whether ( )f g∈ , namely, find r and check 
whether it is zero. Moreover, the Euclidean algorithm allows 

to pass from finite set of generators for an ideal in 
[ ]k X

to a 
single generator by successively replacing each pair of 
generators with their greatest common divisor. 

 
 (Pure) lexicographic ordering (lex). Here monomials are 
ordered by lexicographic(dictionary) order. More precisely, let 

1( ,... )na aα =
 and 1( ,... )nb bβ =

 be two elements of 
n� ; 

then  α β>  and  X Xα β> (lexicographic ordering) if, in 

the vector difference α β− ∈� , the left most nonzero entry 
is positive. For example,  

 
2 3 4 3 2 4 3 2;XY Y Z X Y Z X Y Z> > . Note that this isn’t 

quite how the dictionary would order them: it would put 
XXXYYZZZZ  after XXXYYZ . Graded reverse 
lexicographic order (grevlex). Here monomials are ordered by 
total degree, with ties broken by reverse lexicographic 

ordering. Thus, α β>  if i ia b>∑ ∑ , or i ia b=∑ ∑  

and in α β−  the right most nonzero entry is negative. For 
example:  

4 4 7 5 5 4X Y Z X Y Z>  (total degree greater) 
5 2 4 3 5 4 2,XY Z X YZ X YZ X YZ> > . 

 

Orderings on 
[ ]1,... nk X X

 . Fix an ordering on the 

monomials in 
[ ]1,... nk X X

. Then we can write an element 

f  of 
[ ]1,... nk X X

 in a canonical fashion, by re-ordering its 
elements in decreasing order. For example, we would write 

2 2 3 2 24 4 5 7f XY Z Z X X Z= + − +   
as 

3 2 2 2 25 7 4 4 ( )f X X Z XY Z Z lex= − + + +   
or 

2 2 2 3 24 7 5 4 ( )f XY Z X Z X Z grevlex= + − +   

Let 
[ ]1,..., na X k X Xα

α ∈∑  , in decreasing order: 

0 1

0 1 0 1 0..., ..., 0f a X Xα α
α α α α α= + + > > ≠

  
Then we define. 

• The multidegree of f  to be multdeg(f )= 0α
;  

• The leading coefficient of f to be LC( f )= 0
aα ; 

• The leading monomial of  f to be LM( f ) = 
0X α
; 

• The leading term of f to be LT( f ) = 
0

0
a X α

α   

For the polynomial 
24 ...,f XY Z= +  the multidegree is 

(1,2,1), the leading coefficient is 4, the leading monomial is 
2XY Z , and the leading term is  

24XY Z . The division 

algorithm in 
[ ]1,... nk X X

. Fix a monomial ordering in 
2� . 

Suppose given a polynomial f  and an ordered set 

1( ,... )sg g
 of polynomials; the division algorithm then 

constructs polynomials 1,... sa a
 and r   such that 

1 1 ... s sf a g a g r= + + +
  Where either 0r =  or no 

monomial in r  is divisible by any of 1( ),..., ( )sLT g LT g
  

Step 1: If 1( ) | ( )LT g LT f
, divide 1g

 into f  to get 

[ ]1 1 1 1
1

( )
, ,...,

( ) n

LT f
f a g h a k X X

LT g
= + = ∈

 

If 1( ) | ( )LT g LT h
, repeat the process until  

1 1 1f a g f= +
  (different 1a

) with 1( )LT f
 not divisible by 

1( )LT g
. Now divide 2g

 into 1f , and so on, until 

1 1 1... s sf a g a g r= + + +
  With 1( )LT r

 not divisible by 

any 1( ),... ( )sLT g LT g
  Step 2: Rewrite 1 1 2( )r LT r r= +

, 

and repeat Step 1 with 2r  for f : 

1 1 1 3... ( )s sf a g a g LT r r= + + + +
  (different 

'ia s
 )   

Monomial ideals. In general, an ideal a  will contain a 
polynomial without containing the individual terms of the 

polynomial; for example, the ideal 
2 3( )a Y X= −  contains 

2 3Y X− but not 
2Y  or 

3X . 
 

DEFINITION 1.5. An ideal a  is monomial if 

c X a X aα α
α ∈ ⇒ ∈∑  

 all α  with 
0cα ≠

.  
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PROPOSITION 1.3. Let a be a monomial ideal, and let 

{ }|A X aαα= ∈
. Then A satisfies the condition 

, ( )nAα β α β∈ ∈ ⇒ + ∈ ∗�   And a  is the k -

subspace of 
[ ]1,..., nk X X

 generated by the ,X Aα α ∈ . 

Conversely, of A  is a subset of 
n�  satisfying 

( )∗
, then the 

k-subspace  a  of 
[ ]1,..., nk X X

 generated by 

{ }|X Aα α ∈
is a monomial ideal. 

 
PROOF.  It is clear from its definition that a monomial ideal 

a  is the  k -subspace of 
[ ]1,..., nk X X

  

generated by the set of monomials it contains. If X aα ∈  and 

[ ]1,..., nX k X Xβ ∈
 . 

   
If a permutation is chosen uniformly and at random from the 

!n  possible permutations in 
,nS

 then the counts 
( )n
jC

 of 

cycles of length j  are dependent random variables. The joint 

distribution of 
( ) ( ) ( )

1( ,..., )n n n
nC C C=

 follows from 
Cauchy’s formula, and is given by 

( )

1 1

1 1 1
[ ] ( , ) 1 ( ) , (1.1)

! !
j

nn
cn

j
j j j

P C c N n c jc n
n j c= =

 
= = = = 

 
∑ ∏

  

for 
nc +∈�

.  
 
Lemma1.7 For nonnegative integers 

1,...,

[ ]( )

11 1

,

1
( ) 1 (1.4)

j

j

n

mn n n
mn

j j
jj j

m m

E C jm n
j == =

     
 = ≤           

∑∏ ∏
  

Proof.   This can be established directly by exploiting 

cancellation of the form 
[ ] !/ 1/ ( )!jm
j j j jc c c m= −

  when 

,j jc m≥
 which occurs between the ingredients in Cauchy’s 

formula and the falling factorials in the moments. Write 

jm jm=∑ . Then, with the first sum indexed by 

1( ,... ) n
nc c c += ∈�

 and the last sum indexed by  

1( ,..., ) n
nd d d += ∈�

 via the correspondence 

,j j jd c m= −
 we have  

[ ] [ ]( ) ( )

1 1

[ ]

: 1 1

11 1

( ) [ ] ( )

( )
1

!

1 1
1

( )!

j j

j

j

j j

j j

n n
m mn n

j j
cj j

mnn
j

j c
c c m for all j j j j

n nn

jm d
d jj j j

E C P C c c

c
jc n

j c

jd n m
j j d

= =

≥ = =

== =

 
= = 

 

 
= = 

 

 
= = − 

 

∑∏ ∏

∑ ∑ ∏

∑ ∑∏ ∏
  

This last sum simplifies to the indicator 1( ),m n≤  

corresponding to the fact that if 0,n m− ≥  then 
0jd =

 for 

,j n m> −  and a random permutation in n mS −  must have 

some cycle structure 1( ,..., )n md d − . The moments of 
( )n
jC

  
follow immediately as 

{ }( ) [ ]( ) 1 (1.2)n r r
jE C j jr n−= ≤

  
We note for future reference that (1.4) can also be written in 
the form  

[ ] [ ]( )

11 1

( ) 1 , (1.3)j j

n n n
m mn

j j j
jj j

E C E Z jm n
== =

     
= ≤     

    
∑∏ ∏

  

Where the jZ
 are independent Poisson-distribution random 

variables that satisfy 
( ) 1/jE Z j=

  
 
The marginal distribution of cycle counts provides a formula 

for the joint distribution of the cycle counts 
,n

jC
 we find the 

distribution of 
n
jC
 using a combinatorial approach combined 

with the inclusion-exclusion formula. 
 

Lemma  1.8.   For 1 ,j n≤ ≤  

 

[ / ]
( )

0

[ ] ( 1) (1.1)
! !

k ln j k
n l

j
l

j j
P C k

k l

− −−

=
= = −∑

  
Proof.     Consider the set I  of all possible cycles of length 

,j  formed with elements chosen from 
{ }1,2,... ,n

 so that 
[ ]/j jI n=

. For each ,Iα ∈  consider the “property” 
Gα  of 

having ;α  that is,  
Gα is the set of permutations nSπ ∈

 
such that α  is one of the cycles of .π  We then have 

( )!,G n jα = −
since the elements of 

{ }1,2,...,n
 not in α  

must be permuted among themselves. To use the inclusion-

exclusion formula we need to calculate the term 
,rS
 which is 

the sum of the probabilities of the r -fold intersection of 
properties, summing over all sets of r distinct properties. 
There are two cases to consider. If the r properties are 
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indexed by r cycles having no elements in common, then the 

intersection specifies how rj  elements are moved by the 

permutation, and there are ( )!1( )n rj rj n− ≤  permutations 

in the intersection. There are 
[ ] / ( !)rj rn j r  such intersections. 

For the other case, some two distinct properties name some 
element in common, so no permutation can have both these 
properties, and the r -fold intersection is empty. Thus 

[ ]

( )!1( )

1 1
1( )

! ! !

r

rj

r r

S n rj rj n

n
rj n

j r n j r

= − ≤

× = ≤
  

Finally, the inclusion-exclusion series for the number of 

permutations having exactly k  properties is 

,
0

( 1)l
k l

l

k l
S

l +
≥

+ 
−  

 
∑

  
Which simplifies to (1.1) Returning to the original hat-check 
problem, we substitute j=1 in (1.1) to obtain the distribution of 
the number of fixed points of a random permutation. For 

0,1,..., ,k n=   

( )
1

0

1 1
[ ] ( 1) , (1.2)

! !

n k
n l

l

P C k
k l

−

=

= = −∑
  

and the moments of 
( )
1

nC
 follow from (1.2) with 1.j =  In 

particular, for  2,n ≥  the mean and variance of 
( )
1

nC
are both 

equal to 1. The joint distribution of 
( ) ( )
1( ,..., )n n

bC C
 for any 

1 b n≤ ≤  has an expression similar to (1.7); this too can be 

derived by inclusion-exclusion. For any 1( ,..., ) b
bc c c += ∈�

 

with 
,im ic=∑   

1

( ) ( )
1

...

01 1

[( ,..., ) ]

1 1 1 1
( 1) (1.3)

! !

i i

b

i

n n
b

c lb b
l l

l withi ii i
il n m

P C C c

i c i l
+ +

≥= =
≤ −

=

     = −    
     

∑

∑∏ ∏
  

The joint moments of the first b  counts 
( ) ( )
1 ,...,n n

bC C
 can be 

obtained directly from (1.2) and (1.3) by setting 

1 ... 0b nm m+ = = =
  

 
The limit distribution of cycle counts 
It follows immediately from Lemma 1.2 that for each fixed 

,j  as ,n → ∞  

( ) 1/[ ] , 0,1,2,...,
!

k
n j

j

j
P C k e k

k

−
−= → =

  

So that 
( )n
jC

converges in distribution to a random variable 

jZ
 having a Poisson distribution with mean 1/ ;j  we use the 

notation 
( )n
j d jC Z→

 where 
(1/ )j oZ P j�

  to describe 
this. Infact, the limit random variables are independent. 
 
Theorem 1.6   The process of cycle counts converges in 

distribution to a Poisson process of �  with intensity 
1j−

. 

That is, as ,n → ∞   
( ) ( )
1 2 1 2( , ,...) ( , ,...) (1.1)n n

dC C Z Z→
  

Where the 
, 1,2,...,jZ j =

 are independent Poisson-

distributed random variables with  

1
( )jE Z

j
=

  
Proof.  To establish the converges in distribution one shows 

that for each fixed 1,b ≥  as ,n → ∞   

 
( ) ( )
1 1[( ,..., ) ] [( ,..., ) ]n n

b bP C C c P Z Z c= → =
  

 
Error rates 
The proof of Theorem says nothing about the rate of 
convergence. Elementary analysis can be used to estimate this 

rate when 1b = . Using properties of alternating series with 

decreasing terms, for 0,1,..., ,k n=   

( )
1 1

1 1 1
( ) [ ] [ ]

! ( 1)! ( 2)!

1

!( 1)!

nP C k P Z k
k n k n k

k n k

− ≤ = − =
− + − +

≤
− +    

 
It follows that  

1 1
( )
1 1

0

2 2 1
[ ] [ ] (1.11)

( 1)! 2 ( 1)!

n nn
n

k

n
P C k P Z k

n n n

+ +

=

−≤ = − = ≤
+ + +∑

  
Since 

1

1

1 1 1
[ ] (1 ...) ,

( 1)! 2 ( 2)( 3) ( 1)!

e
P Z n

n n n n n

−

> = + + + <
+ + + + +   

We see from (1.11) that the total variation distance between 

the distribution 
( )
1( )nL C

 of 
( )
1

nC
 and the distribution 1( )L Z

 

of 1Z
 

 

Establish the asymptotics of 
( )( )n

nA C Ρ    under conditions 

0( )A
 and 01( ),B

 where 

{ }
'

( ) ( )

1 1

( ) 0 ,
i i

n n
n ij

i n r j r

A C C
≤ ≤ + ≤ ≤

= =I I
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and 

''( / ) 1 ( )g
i i idr r O iζ −= − =

 as ,i → ∞  for some 
' 0.g >   We start with the expression 

'

'
( ) 0

0

0
1

1

[ ( ) ]
[ ( )]

[ ( ) ]

1 (1 ) (1.1)

i i

n m
n

m

i
i n i

r j r

P T Z n
P A C

P T Z n

E
ir

θ
≤ ≤
+ ≤ ≤

==
=

 
− + 

 
∏

  

{ }{ }

'
0

1 1

1

1 '
1,2,7

[ ( ) ]

exp [log(1 ) ]

1 ( ( )) (1.2)

n

i

P T Z n

d
i d i d

n

O n n

θ θ θ

ϕ

− −

≥

−

=

 = + − 
 

+

∑

  
and 

{ }{ }

'
0

1 1

1

1
1,2,7

[ ( ) ]

exp [log(1 ) ]

1 ( ( )) (1.3)

n

i

P T Z n

d
i d i d

n

O n n

θ θ θ

ϕ

− −

≥

−

=

 = + − 
 

+

∑

 

Where { }
'
1,2,7 ( )nϕ

 refers to the quantity derived from 
'Z . It 

thus follows that 
( ) (1 )[ ( )]n d

nP A C Kn θ− −�
 for a constant 

K , depending on Z  and the 
'

ir  and computable explicitly 

from (1.1) – (1.3), if Conditions 0( )A
 and 01( )B

 are satisfied 

and if 

'

( )g
i O iζ ∗ −=

 from some 
' 0,g >  since, under these 

circumstances, both { }
1 '

1,2,7 ( )n nϕ−

 and  { }
1

1,2,7 ( )n nϕ−

 tend 
to zero as .n → ∞  In particular, for polynomials and square 
free polynomials, the relative error in this asymptotic 

approximation is of order 
1n−
 if 

' 1.g >   
 

For 0 / 8b n≤ ≤  and 0,n n≥
 with 0n

  

{ }7,7

( ( [1, ]), ( [1, ]))

( ( [1, ]), ( [1, ]))

( , ),

TV

TV

d L C b L Z b

d L C b L Z b

n bε
≤
≤

� �

  

Where { }7,7 ( , ) ( / )n b O b nε =
 under Conditions 0 1( ), ( )A D

 

and 11( )B
 Since, by the Conditioning Relation, 

0 0( [1, ] | ( ) ) ( [1, ] | ( ) ),b bL C b T C l L Z b T Z l= = =
� �

  
It follows by direct calculation that 

0 0

0

0

( ( [1, ]), ( [1, ]))

( ( ( )), ( ( )))

max [ ( ) ]

[ ( ) ]
1 (1.4)

[ ( ) ]

TV

TV b b

b
A

r A

bn

n

d L C b L Z b

d L T C L T Z

P T Z r

P T Z n r

P T Z n

∈

=

= =

 = −− = 

∑

� �

  
Suppressing the argument Z  from now on, we thus obtain  

( ( [1, ]), ( [1, ]))TVd L C b L Z b
� �

 

0
0 0

[ ]
[ ] 1

[ ]
bn

b
r n

P T n r
P T r

P T n≥ +

 = −= = − = 
∑

 
[ /2]

0
0

/2 0 0

[ ]
[ ]

[ ]

n
b

b
r n r b

P T r
P T r

P T n> =

=≤ = +
=∑ ∑

 

0
0

[ ]( [ ] [ ]
n

b bn bn
s

P T s P T n s P T n r
= +

 × = = − − = − 
 
∑

 
[ /2]

0 0
/2 0

[ ] [ ]
n

b b
r n r

P T r P T r
> =

≤ = + =∑ ∑
 

{ }[ /2]

0
0 0

[ /2]

0 0
0 [ /2] 1

[ ] [ ]
[ ]

[ ]

[ ] [ ] [ ] / [ ]

n
bn bn

b
s n

n n

b bn n
s s n

P T n s P T n r
P T s

P T n

P T r P T s P T n s P T n

=

= = +

= − − = −
× =

=

+ = = = − =

∑

∑ ∑

 The first sum is at most 
1

02 ;bn ET−
the third is bound by 

{ }

0 0
/2

10.5(1)

( max [ ]) / [ ]

2 ( / 2, ) 3
,

[0,1]

b n
n s n

P T s P T n

n b n

n Pθ

ε
θ

< ≤
= =

≤
  

{ }

{ }

[ /2] [ /2]
2

0 010.8
0 0

10.8 0

3 1
4 ( ) [ ] [ ]

[0,1] 2

12 ( )

[0,1]

n n

b b
r s

b

n
n n P T r P T s r s

P

n ET

P n

θ

θ

φ
θ

φ
θ

− ∗

= =

∗

= = −

≤

∑ ∑

  
Hence we may take 
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{ }
{ }

{ }

10.81
07,7

10.5(1)

6 ( )
( , ) 2 ( ) 1

[0,1]

6
( / 2, ) (1.5)

[0,1]

b

n
n b n ET Z P

P

n b
P

θ

θ

φ
ε

θ

ε
θ

∗
−

  = + 
  

+
  

 

Required order under Conditions 0 1( ), ( )A D
 and 11( ),B

 if 

( ) .S ∞ < ∞  If not, { } ( )10.8 nφ∗

 can be replaced by { } ( )10.11 nφ ∗

in the above, which has the required order, without the 

restriction on the i
r

 implied by ( )S ∞ < ∞ . Examining the 

Conditions  0 1( ), ( )A D
 and 11( ),B

it is perhaps surprising to 

find that 11( )B
 is required instead of just 01( );B

 that is, that 

we should need 
1

2
( )a

ill
l O iε −

≥
=∑   to hold for some 

1 1a >
. A first observation is that a similar problem arises 

with the rate of decay of 1i
ε

 as well. For this reason, 1
n

 is 

replaced by 1n
�

. This makes it possible to replace condition 

1( )A
 by the weaker pair of conditions 0( )A

and 1( )D
in the 

eventual assumptions needed for { } ( )7,7 ,n bε
 to be of order 

( / );O b n   the decay rate requirement of order 
1i γ− −

 is 

shifted from 1iε
 itself to its first difference. This is needed to 

obtain the right approximation error for the random mappings 
example. However, since all the classical applications make 

far more stringent assumptions about the 1, 2,i lε ≥
 than are 

made in 11( )B
. The critical point of the proof is seen where 

the initial estimate of the difference
( ) ( )[ ] [ 1]m m

bn bnP T s P T s= − = +
. The factor { }10.10 ( ),nε

 

which should be small, contains a far tail element from 1n
�

 of 

the form 1 1( ) ( ),n u nθφ ∗+
 which is only small if 1 1,a >

 

being otherwise of order 
11( )aO n δ− +

 for any 0,δ >  since 

2 1a >
 is in any case assumed. For / 2,s n≥  this gives rise 

to a contribution of order  
11( )aO n δ− − +

 in the estimate of the 

difference 
[ ] [ 1],bn bnP T s P T s= − = +

 which, in the 
remainder of the proof, is translated into a contribution of 

order 
11( )aO tn δ− − +

for differences of the form 

[ ] [ 1],bn bnP T s P T s= − = +
 finally leading to a 

contribution of order 
1abn δ− +

 for any 0δ >  in { }7.7 ( , ).n bε
 

Some improvement would seem to be possible, defining the 

function g  by { } { }( ) 1 1 ,w s w s tg w = = += −
  differences that are 

of the form 
[ ] [ ]bn bnP T s P T s t= − = +

 can be directly 
estimated, at a cost of only a single contribution of the form 

1 1( ) ( ).n u nθφ ∗+
 Then, iterating the cycle, in which one 

estimate of a difference in point probabilities is improved to 
an estimate of smaller order, a bound of the form  

112[ ] [ ] ( )a
bn bnP T s P T s t O n t n δ− − +−= − = + = +

 for any 
0δ >  could perhaps be attained, leading to a final error 

estimate in order  
11( )aO bn n δ− +− + for any 0δ > , to 

replace { }7.7 ( , ).n bε
 This would be of the ideal order 

( / )O b n for large enough ,b  but would still be coarser for 

small .b   
 
 

With b and n  as in the previous section, we wish to show 
that  

{ }

1
0 0

7,8

1
( ( [1, ]), ( [1, ])) ( 1) 1

2

( , ),

TV b bd L C b L Z b n E T ET

n b

θ

ε

−− + − −

≤
  

Where { }
121 1

7.8 ( , ) ( [ ])n b O n b n b n β δε − +− −= +
 for any 

0δ >  under Conditions 0 1( ), ( )A D
 and 12( ),B

with 12β
. 

The proof uses sharper estimates. As before, we begin with 
the formula  

 
0

0 0

( ( [1, ]), ( [1, ]))

[ ]
[ ] 1

[ ]

TV

bn
b

r n

d L C b L Z b

P T n r
P T r

P T n≥ +

 = −= = − = 
∑

� �

  
Now we observe that  
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We have   
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The approximation in (1.2) is further simplified by noting that  
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and then by observing that  
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Combining the contributions of (1.2) –(1.3), we thus find tha
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The quantity { }7.8 ( , )n bε
is seen to be of the order claimed 

under Conditions 0 1( ), ( )A D
 and 12( )B

, provided that 
( ) ;S ∞ < ∞  this supplementary condition can be removed if 

{ }10.8 ( )nφ ∗

 is replaced by { }10.11 ( )nφ ∗

   in the definition of 

{ }7.8 ( , )n bε
, has the required order without the restriction on 

the ir  implied by assuming that ( ) .S ∞ < ∞ Finally, a direct 
calculation now shows that 

0 0
0 0

0 0

[ ] [ ]( )(1 )

1
1

2

b b
r s

b b

P T r P T s s r

E T ET

θ

θ

≥ ≥ +

 = = − − 
 

= − −

∑ ∑

 
 

Example 1.0.  Consider the point (0,...,0) nO = ∈� . For 

an arbitrary vector r , the coordinates of the point x O r= +  
are equal to the respective coordinates of the vector 

1: ( ,... )nr x x x=  and 
1( ,..., )nr x x= . The vector r such as 

in the example is called the position vector or the radius 
vector of the point x  . (Or, in greater detail: r  is the radius-
vector of x  w.r.t an origin O). Points are frequently specified 
by their radius-vectors. This presupposes the choice of O as 
the “standard origin”.   Let us summarize. We have considered 

n�  and interpreted its elements in two ways: as points and as 
vectors. Hence we may say that we leading with the two 

copies of  :n�  
n� = {points},      

n� = {vectors}  
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Operations with vectors: multiplication by a number, addition. 
Operations with points and vectors: adding a vector to a point 

(giving a point), subtracting two points (giving a vector). 
n�

treated in this way is called an n-dimensional affine space. 
(An “abstract” affine space is a pair of sets , the set of points 
and the set of vectors so that the operations as above are 
defined axiomatically). Notice that vectors in an affine space 
are also known as “free vectors”. Intuitively, they are not 

fixed at points and “float freely” in space. From 
n�

considered as an affine space we can precede in two opposite 

directions: 
n�  as an Euclidean space ⇐  

n� as an affine 

space ⇒  
n� as a manifold.Going to the left means 

introducing some extra structure which will make the 
geometry richer. Going to the right means forgetting about 
part of the affine structure; going further in this direction will 
lead us to the so-called “smooth (or differentiable) manifolds”. 
The theory of differential forms does not require any extra 
geometry. So our natural direction is to the right. The 
Euclidean structure, however, is useful for examples and 
applications. So let us say a few words about it: 
 

Remark 1.0.  Euclidean geometry.  In 
n�  considered as 

an affine space we can already do a good deal of geometry. 
For example, we can consider lines and planes, and quadric 
surfaces like an ellipsoid. However, we cannot discuss such 
things as “lengths”, “angles” or “areas” and “volumes”. To be 
able to do so, we have to introduce some more definitions, 

making 
n� a Euclidean space. Namely, we define the length 

of a vector 
1( ,..., )na a a=  to be  

1 2 2: ( ) ... ( ) (1)na a a= + +
  

After that we can also define distances between points as 
follows: 

( , ) : (2)d A B AB=
uuur

  
One can check that the distance so defined possesses natural 
properties that we expect: is it always non-negative and equals 
zero only for coinciding points; the distance from A to B is the 
same as that from B to A (symmetry); also, for three points, A, 

B and C, we have ( , ) ( , ) ( , )d A B d A C d C B≤ +  (the 
“triangle inequality”). To define angles, we first introduce the 
scalar product of two vectors 

 
1 1( , ) : ... (3)n na b a b a b= + +   

Thus 
( , )a a a=

 . The scalar product is also denote by dot: 
. ( , )a b a b= , and hence is often referred to as the “dot 

product” . Now, for nonzero vectors, we define the angle 
between them by the equality 

( , )
cos : (4)

a b

a b
α =

  
The angle itself is defined up to an integral multiple 

of 2π  . For this definition to be consistent we have to ensure 
that the r.h.s. of (4) does not exceed 1 by the absolute value. 
This follows from the inequality 

2 22( , ) (5)a b a b≤
  

known as the Cauchy–Bunyakovsky–Schwarz inequality 
(various combinations of these three names are applied in 
different books). One of the ways of proving (5) is to consider 

the scalar square of the linear combination ,a tb+  where 

t R∈ . As  ( , ) 0a tb a tb+ + ≥  is a quadratic polynomial in 
t  which is never negative, its discriminant must be less or 
equal zero. Writing this explicitly yields (5). The triangle 
inequality for distances also follows from the inequality (5). 

 

Example 1.1.    Consider the function ( ) if x x=  (the i-th 

coordinate). The linear function 
idx  (the differential of 

ix  ) 

applied to an arbitrary vector h  is simply 
ih .From these 

examples follows that we can rewrite df  as 

1
1

... , (1)n
n

f f
df dx dx

x x

∂ ∂= + +
∂ ∂   

which is the standard form. Once again: the partial derivatives 

in (1) are just the coefficients (depending on x ); 
1 2, ,...dx dx  

are linear functions giving on an arbitrary vector h  its 

coordinates 
1 2, ,...,h h  respectively. Hence 

  

1
( ) 1

( )( )

... , (2)

hf x

n
n

f
df x h h

x
f

h
x

∂= ∂ = +
∂

∂+
∂  

 
Theorem   1.7.     Suppose we have a parametrized curve 

( )t x ta  passing through 0
nx ∈�

 at 0t t=
 and with the 

velocity vector 0( )x t υ=
 Then  

0 0 0

( ( ))
( ) ( ) ( )( ) (1)

df x t
t f x df x

dt υ υ= ∂ =
  

 
Proof.  Indeed, consider a small increment of the parameter 

0 0:t t t t+ ∆a
, Where 0t∆ a . On the other hand, we 

have  0 0 0( ) ( ) ( )( ) ( )f x h f x df x h h hβ+ − = +
  for an 



International Journal of Engineering Sciences Paradigms and Researches, Vol. 02, Issue 01, December 2012 
ISSN (Online): 2319-6564 
www.ijesonline.com 

 

IJESPR 
www.ijesonline.com 

49 
 

arbitrary vectorh , where ( ) 0hβ →  when 0h →  . 

Combining it together, for the increment of ( ( ))f x t   we 
obtain 

0 0

0

0

( ( ) ( )

( )( . ( ) )

( . ( ) ). ( )

( )( ). ( )

f x t t f x

df x t t t

t t t t t t

df x t t t

υ α
β υ α υ α

υ γ

+ ∆ −
= ∆ + ∆ ∆
+ ∆ + ∆ ∆ ∆ + ∆ ∆
= ∆ + ∆ ∆

     

For a certain ( )tγ ∆  such that ( ) 0tγ ∆ → when 0t∆ →  

(we used the linearity of 0( )df x
). By the definition, this 

means that the derivative of ( ( ))f x t  at 0t t=
 is exactly

0( )( )df x υ
. The statement of the theorem can be expressed 

by a simple formula: 

1
1

( ( ))
... (2)n

n

df x t f f
x x

dt x x

∂ ∂= + +
∂ ∂   

 

To calculate the value Of df  at a point 0x
 on a given vector 

υ  one can take an arbitrary curve passing Through 0x
 at 0t  

with υ  as the velocity vector at 0
t

and calculate the usual 

derivative of ( ( ))f x t  at 0t t=
. 

 

Theorem 1.8.  For functions , :f g U → � , ,nU ⊂ �   

 

( ) (1)

( ) . . (2)

d f g df dg

d fg df g f dg

+ = +
= +    

 

Proof. Consider an arbitrary point 0
x

 and an arbitrary vector 

υ  stretching from it. Let a curve ( )x t  be such that 

0 0( )x t x=
 and 0( )x t υ=

.  

Hence 
0( )( )( ) ( ( ( )) ( ( )))

d
d f g x f x t g x t

dt
υ+ = +

  

at 0t t=
 and  

0( )( )( ) ( ( ( )) ( ( )))
d

d fg x f x t g x t
dt

υ =
  

at 0t t=
 Formulae (1) and (2) then immediately follow from 

the corresponding formulae for the usual derivative Now, 
almost without change the theory generalizes to functions 

taking values in  
m�  instead of � . The only difference is 

that now the differential of a map :
mF U → �  at a point x  

will be a linear function taking vectors in 
n�  to vectors in 

m� (instead of � ) . For an arbitrary vector | ,nh∈ �   
 

( ) ( ) ( )( )F x h F x dF x h+ = +   

+
( ) (3)h hβ

  

Where ( ) 0hβ →   when  0h → . We have  
1( ,..., )mdF dF dF=  and  

1
1

1 1

11

1

...

....

... ... ... ... (4)

...

n
n

n

nm m

n

F F
dF dx dx

x x

F F
dxx x

dxF F

x x

∂ ∂= + +
∂ ∂

 ∂ ∂
  ∂ ∂  =   
  ∂ ∂    ∂ ∂    

 
In this matrix notation we have to write vectors as vector-
columns. 

 

Theorem 1.9. For an arbitrary parametrized curve ( )x t  in 
n� , the differential of a   map : mF U → �  (where 

nU ⊂ � ) maps the velocity vector ( )x t  to the velocity 

vector of the curve ( ( ))F x t  in :m�   
.( ( ))

( ( ))( ( )) (1)
dF x t

dF x t x t
dt

=
    

 
Proof.  By the definition of the velocity vector, 

.

( ) ( ) ( ). ( ) (2)x t t x t x t t t tα+ ∆ = + ∆ + ∆ ∆   

Where ( ) 0tα ∆ →  when 0t∆ → . By the definition of the 
differential,  

( ) ( ) ( )( ) ( ) (3)F x h F x dF x h h hβ+ = + +
  

Where ( ) 0hβ →  when 0h → . we obtain  
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.

.

. .

.

( ( )) ( ( ). ( ) )

( ) ( )( ( ) ( ) )

( ( ) ( ) ). ( ) ( )

( ) ( )( ( ) ( )

h

F x t t F x x t t t t

F x dF x x t t t t

x t t t t x t t t t

F x dF x x t t t t

α

α

β α α

γ

+ ∆ = + ∆ + ∆ ∆

= + ∆ + ∆ ∆ +

∆ + ∆ ∆ ∆ + ∆ ∆

= + ∆ + ∆ ∆

144424443

   
 

For some ( ) 0tγ ∆ →  when 0t∆ → . This precisely means 

that 

.

( ) ( )dF x x t  is the velocity vector of ( )F x . As every 
vector attached to a point can be viewed as the velocity vector 
of some curve passing through this point, this theorem gives a 

clear geometric picture of dF  as a linear map on vectors. 
   

Theorem 1.10 Suppose we have two maps :F U V→  and 

: ,G V W→  where , ,n m pU V W⊂ ⊂ ⊂� � �  (open 

domains). Let : ( )F x y F x=a . Then the differential of 

the composite map :GoF U W→  is the composition of the 

differentials of F  and :G   
( )( ) ( ) ( ) (4)d GoF x dG y odF x=   

 
Proof.   We can use the description of the 

differential .Consider a curve ( )x t  in 
n�  with the velocity 

vector 

.

x . Basically, we need to know to which vector in  
p�

it is taken by ( )d GoF . the curve 
( )( ( ) ( ( ( ))GoF x t G F x t= . By the same theorem, it equals 

the image under dG  of the Anycast Flow vector to the curve 
( ( ))F x t  in 

m� . Applying the theorem once again, we see 

that the velocity vector to the curve ( ( ))F x t is the image 

under dF of the vector 

.

( )x t . Hence 
. .

( )( ) ( ( ))d GoF x dG dF x=   for an arbitrary vector 

.

x  . 
 

Corollary 1.0.    If we denote coordinates in 
n� by 

1( ,..., )nx x  and in 
m� by 

1( ,..., )my y , and write 

1
1

1
1

... (1)

... , (2)

n
n

n
n

F F
dF dx dx

x x
G G

dG dy dy
y y

∂ ∂= + +
∂ ∂
∂ ∂= + +
∂ ∂   

Then the chain rule can be expressed as follows: 

1
1

( ) ... , (3)m
m

G G
d GoF dF dF

y y

∂ ∂= + +
∂ ∂   

Where 
idF  are taken from (1). In other words, to get 

( )d GoF  we have to substitute into (2) the expression for 
i idy dF=  from (3). This can also be expressed by the 

following matrix formula: 
  

1 1 1 1

11 1

1 1

.... ....

( ) ... ... ... ... ... ... ... (4)

... ...

m n

np p m m

m n

G G F F
dxy y x x

d GoF

dxG G F F

y y x x

 ∂ ∂  ∂ ∂
   ∂ ∂ ∂ ∂    =   
   ∂ ∂ ∂ ∂      ∂ ∂ ∂ ∂    
 

i.e., if dG  and dF  are expressed by matrices of partial 

derivatives, then ( )d GoF  is expressed by the product of 
these matrices. This is often written as  

 
1 11 1

11

1 1

1 1

1

1

........

... ... ... ... ... ...

... ...

....

... ... ... , (5)

...

mn

p p p p

n m

n

m m

n

z zz z
y yx x

z z z z

x x y y

y y

x x

y y

x x

 ∂ ∂ ∂ ∂
   ∂ ∂∂ ∂   
 = 
  ∂ ∂ ∂ ∂     ∂ ∂ ∂ ∂   

 ∂ ∂
 ∂ ∂ 
 
 ∂ ∂  ∂ ∂   

Or 

1

, (6)
im

a i a
i

z z y

x y x

µ µ

=

∂ ∂ ∂=
∂ ∂ ∂∑

  

Where it is assumed that the dependence of 
my ∈�  on 

nx∈�  is given by the map F , the dependence of 
pz ∈�  

on 
my ∈�  is given by the map ,G  and the dependence of  

pz ∈� on 
nx∈� is given by the composition GoF .  
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Definition 1.6.  Consider an open domain 
nU ⊂ � . Consider 

also another copy of 
n� , denoted for distinction 

n
y�

, with 

the standard coordinates 
1( ... )ny y . A system of coordinates 

in the open domain U  is given by a map : ,F V U→  

where 
n
yV ⊂ �

 is an open domain of 
n
y�

, such that the 
following three conditions are satisfied :  

(1) F  is smooth; 

(2) F  is invertible; 

(3) 
1 :F U V− →  is also smooth 

 

The coordinates of a point x U∈  in this system are the 

standard coordinates of 
1( ) n

yF x− ∈�
 

In other words,  
1 1: ( ..., ) ( ..., ) (1)n nF y y x x y y=a   

Here the variables 
1( ..., )ny y  are the “new” coordinates of 

the point x   
 

Example  1.2.     Consider a curve in 
2�  specified in polar 

coordinates as  
( ) : ( ), ( ) (1)x t r r t tϕ ϕ= =   

We can simply use the chain rule. The map ( )t x ta  can be 
considered as the composition of the maps  

( ( ), ( )), ( , ) ( , )t r t t r x rϕ ϕ ϕa a . Then, by the chain rule, 
we have  

. . .

(2)
dx x dr x d x x

x r
dt r dt dt r

ϕ ϕ
ϕ ϕ

∂ ∂ ∂ ∂= = + = +
∂ ∂ ∂ ∂    

Here 
.

r  and 

.

ϕ  are scalar coefficients depending on t , 

whence the partial derivatives 
,x x

r ϕ
∂ ∂

∂ ∂   are vectors 

depending on point in 
2� . We can compare this with the 

formula in the “standard” coordinates: 

. . .

1 2x e x e y= +
. 

Consider the vectors   
,x x

r ϕ
∂ ∂

∂ ∂ . Explicitly we have  

(cos ,sin ) (3)

( sin , cos ) (4)

x

r
x

r r

ϕ ϕ

ϕ ϕ
ϕ

∂ =
∂
∂ = −
∂   

From where it follows that these vectors make a basis at all 

points except for the origin (where 0r = ). It is instructive to 
sketch a picture, drawing vectors corresponding to a point as 

starting from that point. Notice that  
,x x

r ϕ
∂ ∂

∂ ∂  are, 

respectively, the velocity vectors for the curves ( , )r x r ϕa   

0( )fixedϕ ϕ=
 and 0( , ) ( )x r r r fixedϕ ϕ =a

. We 
can conclude that for an arbitrary curve given in polar 

coordinates the velocity vector will have components 

. .

( , )r ϕ  

if as a basis we take 
: , : :r

x xe er ϕ ϕ
∂ ∂= =∂ ∂   

. . .

(5)rx e r eϕ ϕ= +
   

A characteristic feature of the basis 
,re eϕ  is that it is not 

“constant” but depends on point. Vectors “stuck to points” 
when we consider curvilinear coordinates. 

 
Proposition  1.3.   The velocity vector has the same 
appearance in all coordinate systems. 
Proof.        Follows directly from the chain rule and the 

transformation law for the basis i
e

.In particular, the elements 

of the basis 
ii

xe
x

∂= ∂  (originally, a formal notation) can be 
understood directly as the velocity vectors of the coordinate 

lines 
1( ,..., )i nx x x xa   (all coordinates but 

ix  are fixed). 
Since we now know how to handle velocities in arbitrary 
coordinates, the best way to treat the differential of a map 

: n mF →� �  is by its action on the velocity vectors. By 
definition, we set 

0 0 0

( ) ( ( ))
( ) : ( ) ( ) (1)

dx t dF x t
dF x t t

dt dt
a

  

Now 0( )dF x
 is a linear map that takes vectors attached to a 

point 0
nx ∈�

 to vectors attached to the point ( ) mF x ∈�   

1
1

1 1

11

1

1

...

...

( ,..., ) ... ... ... ... , (2)

...

n
n

n

m
nm m

n

F F
dF dx dx

x x

F F
dxx x

e e

dxF F

x x

∂ ∂= + +
∂ ∂

 ∂ ∂
  ∂ ∂  
  
  ∂ ∂    ∂ ∂    

In particular, for the differential of a function we always have  
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1
1

... , (3)n
n

f f
df dx dx

x x

∂ ∂= + +
∂ ∂   

Where 
ix  are arbitrary coordinates. The form of the 

differential does not change when we perform a change of 
coordinates. 

 

Example  1.3   Consider a 1-form in 
2�  given in the 

standard coordinates: 
 

A ydx xdy= − +   In the polar coordinates we will have 
cos , sinx r y rϕ ϕ= = , hence 
cos sin

sin cos

dx dr r d

dy dr r d

ϕ ϕ ϕ
ϕ ϕ ϕ

= −
= +   

Substituting into A , we get 

2 2 2 2

sin (cos sin )

cos (sin cos )

(sin cos )

A r dr r d

r dr r d

r d r d

ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

= − −
+ +
= + =   

Hence  
2A r dϕ=  is the formula for A  in the polar 

coordinates. In particular, we see that this is again a 1-form, a 
linear combination of the differentials of coordinates with 
functions as coefficients. Secondly, in a more conceptual way, 

we can define a 1-form in a domain U  as a linear function on 

vectors at every point of U : 
1

1( ) ... , (1)n
nω υ ω υ ω υ= + +

  

If 
i

ieυ υ=∑ , where 
ii

xe
x

∂= ∂ . Recall that the 
differentials of functions were defined as linear functions on 
vectors (at every point), and  

( ) (2)i i i
j jj

x
dx e dx

x
δ∂ = = ∂      at every point 

x .  
 

Theorem  1.9.   For arbitrary 1-form ω  and path γ , the 

integral γ
ω∫

 does not change if we change parametrization of 
γ  provide the orientation remains the same. 

Proof: Consider 
'

( ( )),
dx

x t
dt

ω
 and  

'
'

( ( ( ))),
dx

x t t
dt

ω
 

As 

'
'

( ( ( ))),
dx

x t t
dt

ω
=

'
' '

( ( ( ))), . ,
dx dt

x t t
dt dt

ω
  

Let p  be a rational prime and let 
( ).pK ζ= �

 We write ζ  

for pζ
 or this section. Recall that K  has degree 

( ) 1p pϕ = −  over .�  We wish to show that 
[ ].KO ζ= �

 

Note that ζ  is a root of 1,px −  and thus is an algebraic 

integer; since KΟ
 is a ring we have that 

[ ] .KOζ ⊆�
 We 

give a proof without assuming unique factorization of ideals. 

We begin with some norm and trace computations. Let j  be 

an integer. If j is not divisible by ,p  then 
jζ  is a primitive 

thp  root of unity, and thus its conjugates are 
2 1, ,..., .pζ ζ ζ −

 Therefore 
 

2 1
/ ( ) ... ( ) 1 1j p

K pTr ζ ζ ζ ζ ζ−= + + + = Φ − = −�   

If p  does divide ,j  then 1,jζ =  so it has only the one 

conjugate 1, and  / ( ) 1j
KTr pζ = −�  By linearity of the 

trace, we find that  
2

/ /

1
/

(1 ) (1 ) ...

(1 )

K K

p
K

Tr Tr

Tr p

ζ ζ

ζ −

− = − =

= − =
� �

�  

We also need to compute the norm of 1 ζ− . For this, we use 
the factorization  

 

1 2

2 1

... 1 ( )

( )( )...( );

p p
p

p

x x x

x x xζ ζ ζ

− −

−

+ + + = Φ

= − − −   
Plugging in 1x =  shows that  

 
2 1(1 )(1 )...(1 )pp ζ ζ ζ −= − − −   

Since the (1 )jζ−  are the conjugates of (1 ),ζ− this shows 

that  / (1 )KN pζ− =�  The key result for determining the 

ring of integers KO
 is the following. 

 
LEMMA 1.9 

  
(1 ) KO pζ− ∩ =� �

  

Proof.  We saw above that p  is a multiple of (1 )ζ−  in 

,KO
 so the inclusion 

(1 ) KO pζ− ∩ ⊇� �
 is immediate.  

Suppose now that the inclusion is strict. Since 

(1 ) KOζ− ∩�
is an ideal of �  containing p�  and p� is 
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a maximal ideal of � , we must have  
(1 ) KOζ− ∩ =� �

 

Thus we can write  1 (1 )α ζ= −   

For some 
.KOα ∈
 That is, 1 ζ−  is a unit in 

.KO
  

 

COROLLARY 1.1   For any 
,KOα ∈
 

/ ((1 ) ) .KTr pζ α− ∈� �
  

PROOF.       We have  
 

/ 1 1

1 1 1 1

1
1 1

((1 ) ) ((1 ) ) ... ((1 ) )

(1 ) ( ) ... (1 ) ( )

(1 ) ( ) ... (1 ) ( )

K p

p p

p
p

Tr ζ α σ ζ α σ ζ α
σ ζ σ α σ ζ σ α

ζ σ α ζ σ α

−

− −

−
−

− = − + + −

= − + + −

= − + + −

�

 

Where the iσ
 are the complex embeddings of K  (which we 

are really viewing as automorphisms of K ) with the usual 

ordering.  Furthermore, 1 jζ−  is a multiple of 1 ζ−  in KO
 

for every 0.j ≠  Thus 

/ ( (1 )) (1 )K KTr Oα ζ ζ− ∈ −�  Since the trace is also a 
rational integer. 
 

PROPOSITION 1.4  Let p  be a prime number and let 

| ( )pK ζ= �
 be the 

thp  cyclotomic field. Then  

[ ] [ ] / ( ( ));K p pO x xζ= ≅ Φ� �
 Thus 

21, ,..., p
p pζ ζ −

 is an 

integral basis for KO
. 

PROOF.    Let   KOα ∈
 and write 

2
0 1 2... p

pa a aα ζ ζ −
−= + + +

  With 
.ia ∈�
 Then 

 

2
0 1

2 1
2

(1 ) (1 ) ( ) ...

( )p p
p

a a

a

α ζ ζ ζ ζ
ζ ζ− −

−

− = − + − +

+ −
  

By the linearity of the trace and our above calculations we 

find that  / 0( (1 ))KTr paα ζ− =�  We also have  

/ ( (1 )) ,KTr pα ζ− ∈� �
so 0a ∈�

  Next consider the 
algebraic integer  

1 3
0 1 2 2( ) ... ;p

pa a a aα ζ ζ ζ− −
−− = + + +

 This is an 

algebraic integer since 
1 1pζ ζ− −=  is. The same argument as 

above shows that 1
,a ∈�
 and continuing in this way we find 

that all of the ia
 are in � . This completes the proof. 

  

Example 1.4   Let K = � , then the local ring ( )p�
 is 

simply the subring of �  of rational numbers with 

denominator relatively prime to p . Note that this ring   ( )p�

is not the ring p�
of p -adic integers; to get  p�

one must 

complete ( )p�
. The usefulness of ,K pO

 comes from the fact 
that it has a particularly simple ideal structure. Let a be any 

proper ideal of ,K pO
 and consider the ideal Ka O∩

 of 
.KO
 

We claim that ,( ) ;K K pa a O O= ∩
   That is, that a  is 

generated by the elements of a  in 
.Ka O∩
 It is clear from 

the definition of an ideal that ,( ) .K K pa a O O⊇ ∩
 To prove 

the other inclusion, let α  be any element of a . Then we can 

write /α β γ=  where KOβ ∈
 and .pγ ∉  In particular, 

aβ ∈  (since / aβ γ ∈  and a  is an ideal), so KOβ ∈
 and 

.pγ ∉  so 
.Ka Oβ ∈ ∩

 Since ,1/ ,K pOγ ∈
 this implies 

that ,/ ( ) ,K K pa O Oα β γ= ∈ ∩
 as claimed.We can use 

this fact to determine all of the ideals of , .K pO
 Let a  be any 

ideal of ,K pO
and consider the ideal factorization of Ka O∩

in 
.KO
 write it as 

n
Ka O p b∩ =

 For some n  and some 

ideal ,b  relatively prime to .p  we claim first that 

, , .K p K pbO O=
 We now find that 

  , , ,( ) n n
K K p K p K pa a O O p bO p O= ∩ = =

  Since 

, .K pbO
 Thus every ideal of ,K pO

 has the form ,
n

K pp O
 for 

some ;n  it follows immediately that ,K pO
is noetherian. It is 

also now clear that ,
n

K pp O
is the unique non-zero prime 

ideal in ,K pO
. Furthermore, the inclusion 

, ,/K K p K pO O pOa
 Since , ,K p KpO O p∩ =

 this map is 

also surjection, since the residue class of ,/ K pOα β ∈
 (with 

KOα ∈
 and pβ ∉ ) is the image of 

1αβ −
 in / ,K pO

 which 

makes sense since β  is invertible in / .K pO
 Thus the map is 

an isomorphism. In particular, it is now abundantly clear that 

every non-zero prime ideal of ,K pO
is maximal.  To show 
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that ,K pO
is a Dedekind domain, it remains to show that it is 

integrally closed in K . So let Kγ ∈  be a root of a 

polynomial with coefficients in  , ;K pO
 write this polynomial 

as  

11 0

1 0

...m mm

m

x x
α α
β β

−−

−

+ + +
 With i KOα ∈

 and 

.i K pOβ −∈
 Set 0 1 1... .mβ β β β −=

 Multiplying by 
mβ  we 

find that βγ  is the root of a monic polynomial with 

coefficients in 
.KO
 Thus 

;KOβγ ∈
 since ,pβ ∉  we have 

,/ K pOβγ β γ= ∈
. Thus  ,K pO

is integrally close in .K   
 

COROLLARY 1.2.   Let K  be a number field of degree n  

and let α  be in KO
 then 

'
/ /( ) ( )K K KN O Nα α=� �   

PROOF.  We assume a bit more Galois theory than usual for 

this proof. Assume first that /K �  is Galois. Let σ  be an 

element of ( / ).Gal K �  It is clear that 

/( ) / ( ) ;K KO O ασ σ α ≅
 since 

( ) ,K KO Oσ =
 this shows 

that 
' '

/ /( ( ) ) ( )K K K KN O N Oσ α α=� � . Taking the product 

over all ( / ),Gal Kσ ∈ �  we have 
' '

/ / /( ( ) ) ( )n
K K K K KN N O N Oα α=� � �  Since / ( )KN α�  is 

a rational integer and KO
 is a free� -module of rank ,n    

// ( )K K KO N Oα�   Will have order / ( ) ;n
KN α�  therefore 

 
'

/ / /( ( ) ) ( )n
K K K K KN N O N Oα α=� � �  

This completes the proof.  In the general case, let L  be the 

Galois closure of K  and set [ : ] .L K m=   
 

A. Spatial Analysis 

Spatial Analysis of people suffering from Cancer in North 
America and the trend in Geo Location. Spatial Analysis is to 
measure properties and relationship with spatial localization 
and the events like Brain Cancer in America. The model 
processes define the distribution of spread of cancer in space.  

 
Taxonomy used are Events, Point Patterns to express 

occurrences of Cancer patient as points in space listed as Point 
Processes and give the localization coordinates. This study 
developed the modelling process for exploratory analysis to 
provide graphs, maps and spatial patterns. 

 

In Point Pattern Analysis the object of interest is the spatial 
location of cancer events as the type of cancer and the 
numbers associated with Mortality.  Objective is to study the 
spatial distribution and develop testing hypothesis about the 
observed and forecast pattern. 

The model uses the geostatistics techniques to define 
homogeneous bahavior on the spatial correlation data 
structure in geolocation. 

 
Spatial Autocorrelation is the spatial dependency based on 

computation framework, this is to measure relationship 
between two random variables, but are applying the concept 
on multiple variable the distinguish Brain Tumor Types, 
Nervous Cancer Types, Location and Influence Factors.  
Verifying spatial dependency varies based on comparative 
analysis of population sample and nearest points. 

 
 
 

 

Fig 1 :  Delaunay Tetrahedra Volume 

 

 

 

Fig. 2:  F Function ( Cumulative Sample Point to Nearest Cell 
Distances) 
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Fig 3: G Function (Cumulative Nearest Neighbor 

Distribution) 
 

  
Fig  4: K Function (Cumulative Density) 
 

 
 
Fig  5  : Near Neighbors 
 

 
 
Fig 6 : Three Dimension Autocorrelation and Histogram 
 

 
 
Fig  7 : Voronio Domain 
 

 
 
Fig 8 :  Autocorrelation Histogram 
 

 
 
Fig 9 :  Voronio Domain Director Vector and Histogram 
 

 
 
Fig 10 : North America Cancer patient distribution 
 
 

Cancer Types  

0-19  20+  

Benign/B
orderline  

Malig
nant  

Benign/B
orderline  

Malig
nant  

Total 
1.6 

(1.5-1.8) 

3.4 
(3.3-
3.6) 

12.1 
(11.9-
12.3) 

10 
(9.8-
10.2) 

Tumors of 
Neuroepthelial Tissue 

.6 
(0.5-0.6) 

3.1 
(2.9-
3.3) 

.4 
(0.4-0.5) 

8.5 
(8.3-
8.7) 

Pilocytic 
astrocytoma  

.8 
(0.7-
0.9) 

 

.1 
(0.1-
0.2) 

Diffuse astrocytoma  

.1 
(0.0-
0.1) 

 

.2 
(0.1-
0.2) 

Anaplastic 
astrocytoma  

.1 
(0.1-
0.2) 

 

.6 
(0.6-
0.6) 

Unique astrocytoma 
variants 

.1 
(0.0-0.1) 

.1 
(0.0-
0.1) 

.1 
(0.1-0.1) 

0. 
(0.0-
0.0) 
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Astrocytoma, NOS  

.2 
(0.2-
0.3) 

 

.6 
(0.5-
0.6) 

Glioblastoma  

.2 
(0.1-
0.2) 

 

5.3 
(5.2-
5.5) 

Oligodendroglioma  

.1 
(0.0-
0.1) 

 

.4 
(0.3-
0.4) 

Anaplastic 
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Fig11: Crude Incidence Rate [4] 
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 Fig. 12  Classification of Brain Cancer 

IV.  CONCLUSIONS 

Cancer patients in America is reducing and especially Brain 
Cancer percentage is in control and not increase as compared 
to Lung Cancer.  Next work is to layout the framework for 
epidemic models 
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