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Abstract

This paper discuss about statistical representati@rain Cancer in
America. Brain cancer morbidity is high and treatinplans like
chemotherapy, surgical resection of Tumor, Hypertiie and Radio
Surgery is key elements for the treatment of p&ienffering from
Brain Cancer. Who and Disease control preventionsdtia used to
perform analysis. Incidence Rate, Death Rate, Incielé@ount and
Death count in male and female are rising; Claggific of Data is
based on Brain Tumor and other Nervous. Brain Tumarleading
cause of death and once its diagnosed base otate af cancer life
expectancy is about 5 Years or so. Incidence faBrain Cancer in
age group and gender difference is analyzed basedStates.
Spatially Analytic data is used for the geo-viseadion of Cancer.
Sources of data are from Cancer registries, WorldaltHe
Organization, Health Information Database and remsensing data.
Keywords: Brain Cancer, Spatial Analysis, Autocorrelation,
Fuzzy Logic.

I. INTRODUCTION

This research is focus on giving tools and techedgqio the
field of epidemiology to study and provide treatitnBrain
Cancer patient. This would help to control the a$se and

create the disease model and act on the trendsagf Bancer.

Large and highly complex data structure are andlysegrid
computing environment. Purpose of this researtb ovide
the growth of Brain Cancer in America and find dbe
similarity and differences in the regions of BraBancer
depending upon spatial information. Geo Spatiabrimiation
helps in predicting the spread of disease. Mathiealahodel
helps in analysing the Brain cancer Characterisiitancer
Etiology is also represented in spatial form andtgoa on
Treatment [1]. Spatial data refer to data with tmosal
attributes. Most commonly, locations are given iart€sian
coordinates referenced to
coordinates may describe points, lines, areas loimas. This
need not be the only spatial framework; "relatipaces" may
be defined in which distance is defined in termsarhe other
attribute, such as socio-demographic  similarly

connectedness along transportation networks [2][B&re are
over 600,000 people in the US living with a primdmain

tumor and over 28,000 of these cases are amondrehil

under the age of 20.1

29

the earth's surface. €Th

Metastatic brain tumors (cancer that spreads frémrgparts
of the body to the brain) occur at some point int@@0% of
persons with cancer and are the most common tygeaof
tumor.

Over 7% of all reported primary brain tumors in tdeited
States are among children under the age of 20.

Each year approximately 210,000 people in the dn8tates
are diagnosed with a primary or metastatic brainatu That's
over 575 people a day:
* An estimated 62,930 of these cases are primary
malignant and non-malignant tumors.
* The remaining cases are brain metastases (camter th
spreads from other parts of the body to the brain).
* Among children under age 20, brain tumors are:
the most common form of solid tumor
the second leading cause of cancer-related deaths,
following leukemia
the second leading cause of cancer-related deaths
among females

* Among adults, brain tumors are:
+ the second leading cause of cancer-related deaths
among males up to age 39

the fifth leading cause of cancer-related deaths
among women ages 20-39

+

There are over 120 different types of brain tumeonsking
effective treatment very complicated. Because btamors

§Pe located at the control center for thought, ewmotand

movement, their effects on an individual's physieald
cognitive abilities can be devastating. At presbrajn tumors
are treated by surgery, radiation therapy, and ofieenapy,

Used either individually or in combination. No twarain

tumors are alike. Prognosis, or expected outconse, i
dependent on several factors including the typetuofor,
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location, response to treatment, an individual'®, agnd 1
overall health status. S(2) = 1te?

(2)

An estimated 35% of adults living with a primary ligaant

. . . )/
brain or CNS tumor will live five years or longer. It describes the relation between the input rate of

populationi as a function of the packets potential, for

Brain tumors in children are different from thoseadults and V. =v =g, (V. -h)]. vV p-
X example, We note V the
are often treated differently. Although over 72%qemt of
children with brain tumors will survive, they ardtem left §imensional vector (\/l""’vp )- The P function
with long-term side effects [4]. i=1
@ P represent the initial conditions, see below. We

Il. METHODOLOGY note # the P~ dimensional vector((q""'(pp ) The P

Study of spatial autocorrelation analysis suppdtis = =1,..,p,
hypotheses to predict the geo location and volunfie ot =
epidemiological insights. Information pertained nfrofirst other network areas. We nott” the P~ dimensional
order autocorrelation (Brain Cancer & Nervous) givde (12...,18).
pattern of mortality in spatial space.Applied splati vector t P The
autocorrelation to define correlation of a cancatadet in ] :{Ji.}i - o
variable array with itself through Fuzzy Topolodicspace. P LIZ-P - represents  the  connectivity between
Measured the characteristics at one state exangliéo@ia populations i and 1’ see below. TheP real values
are similar or dissimilar to nearby states examy&vada. IH i=1..p
Measure the most probable occurrence of event a& on’ 1T determine the threshold of activity for each
location with nearby inter-connected locations.Agglthe population, that is, the value of the nodes po&tnti
measurement using Joint Count Statistics, Moran'§eary’s corresponding to 50% of the maximal activity. TRereal
ratio, General G, Local Index of Spatial Autocoatan and g.,i=1...p
Global Index of  Spatial Autocorrelation.Spatiapositive values™ '’ 7T determine the slopes of the
Autocorrelation produced positive results with samivalues  sigmoids at the origin. Finally thd® real positive values
Fuzzy Cluster on the map and Negative dissimilaalues L i=1
Fuzzy Cluster on the map. Fuzzy connectednessitpehis 1’ P determine the speed at which each anycast
used to measure brain tumor volume; this is alggiegh on node potential decreases exponentially towardeitd value.
brain lesion volume estimation. Multiple Fuzzy spacare _ . § R° , RP
defined to layout the computational framework. RuzZ2/Ve also introduce the functiofr"
compactness and connectedness are distinct abgobgerty - S(x) =[S(0y(x, —h)),...,S(g, —h,))],

that is used for fuzzy topology. Absolute topolagywhere all ]
. pxp . LOZdIag(|1,...,| ) L
diagonal matrix P”Is the intrinsic

subspaces 2 Y= X of a space X, Z fulfills P (propgera
subspace of Y iff Z fulfills P as a subspace ofe consider dynamics of the population given by the linear of

the following anycast field equations defined oeer open

.t
ch)mctlon ' represent external factors from

pxp matrix of functions

' defined by

and the

bounded piece of network and /or feature sp@&l R®. (i+|i) (£+|i)2
They describe the dynamics of the mean anycastacti ef data transfer. dt is replaced by dt to use the
p node populations. d
d P , - _ (_+Ii)
(—+Ii)\/i(t,r)=ZJ J; (r,r)S[V, (=7, (r,r),r)—h)ldr alpha function response. We usélt for simplicity
dt = @ although our analysis applies to more general nisiti
+15(r, 1), t>0,1<i<p, dynamics. For the sake, of generality, the propagatelays
V,(t,r)=q(t,r) tO[-T,0] are not assumed to be identical for all populatitresice they
are described by a matrfd" ") whose elementi (r.r) is

We give an interpretation of the various parametans

functions that appear in (£ is finite piece of nodes and/orthe Propagation delay between populatidn at T and
feature space and is represented as an open boseded population! at I'- The reason for this assumption is that it is
" still unclear from anycast if propagation delayse ar
independent of the populations. We assume for teahn
is the normalized sigmoid function: 002 RP*P
reasons that is continuous, that isTDC (Q,R™).

d
R™ . The vector” and f represent points inQ . The

function S:R-(0,1)
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Moreover packet data indicate thht is not a symmetric

o (r,n) 2T (), o
function i.e., ”( ) ”( ) thus no assumption is
made about this symmetry unless otherwise statedrder to
compute the righthand side of (1), we need to kitlmavnode

potential factor¥ on interval[_T’o]' The value ofT is
obtained by considering the maximal delay:

,= max 7, () (3)

i,j(r,roQxQ)

T=r1
Hence we choose m

. MATHEMATICAL FRAMEWORK
A convenient functional setting for the non-delayeatcket

2 p
field equations is to use the spa%e L(Q,R") which is

a Hilbert space endowed with the usual inner prbduc

j V(U (Hdr (1)
To give a meanmg to (1), we defined the historyacep
C=C°(~7,0F) Ly 4 =5UR0 ot )F .

which is the Banach phase space associated wititioqy(3).

V,(6) =V (t +6),60[7,,0],

(V,u),

Using the notation

Notice that this result gives existence 5’7’ finite-time
explosion is impossible for this delayed differah&quation.
Nevertheless, a particular solution could grow fimdeely, we
now prove that this cannot happen.

Boundedness of Solutions

A valid model of neural networks should only featur
bounded packet node potentials.

Theorem 1.0 All the trajectories are ultimately bded by the

same constar® it | 2% |1 t), <e.

Proof :let us defined [ -RXC =R g
(V) = (LM O+ LSW)+ 1= OV ), =2 M

We noteI =min, |

fev) == IVOI: + (el + DIV,

Thus, if

def
=-0<0

v, 2 zJ'Tq'IJF”“i REEM)<-T

write (1) as

. Let us show that the open route bof of center 0 and radius
V(1) =-L V() + LS(V,) + 1),
®) LOV( ) ch(vt) ® (2) R.Bg, is stable under the dynamics of equation. We know
= ¢ ,

Where ° thatv(t) is defined for alit 20S angd thatf <0 on aBR’

L1:C - F, the boundary ofBR. We consider three cases for the initial
-\ — T <
Q- IQ J(,n)e(r,—r(.,r)dr condition Vo. If ”VO”C R and set
Is the linear continuous operator satisfying =SUpft [UsCI[Ot]V (s)U B} Suppose that U R

” Ll” = ”J”LZ(QZ,R”X”) ’

Notice that most of the papers on thi

subject assum& infinite, hence requiringrm a

Proposition 1.0 If the following assumptions aaéisfied.

1 JOLA(Q%R™P),

ext 0
2. The external currenl e (R’F)’

r0co(Q?, RP"),sup; 7 <7,

Then for any puC,

V OCY([0,),F)n C°([~7,,%,F) to (3)

there exists a unique solution

v(T)

shen is defined and belongs th’ the closure of

Br, because By is closed, in effect t(?BR’ we also have
d 2
VE =TTV s-a<0

because
Thus we deduce that forf >0 and small enough,
V(T +¢€)0B,

V(T)00B,.

R which contradicts the definition of T. Thus

TOR and BR is stable. Because f<0 o aBR’V (O)DaB

implies thai >0V BR. Finally we conside_rthe case
V(0)UCBg . Suppose that 0t>0V (U B, then
IJESPR
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Proof: By Tietze's theorem,f can be extended to a
hus ||\/(t)||F is monotonically C€ontinuous function in the plane, with compact sappWe
decreasing and reaches the value of R in finitee tihen iy one such extension and denote it again fby For any

V(t)

d 2
0t>0, 9 V] <

reachesaBR' This contradicts our assumption. Thu35>o’ let w(é) be the supremum of the numbers

ar>o|v (T)UBy. -
| (T) R |f(22) f(21)| Where 4 and % are subject to the
Proposition 1.1 : Let © and' be measured simple functionsondition . Since ' is uniformly continous, we
X. ¢y EEM, | o lima(J) =0 @
n /- for define have 9-0 From now on,O will be

fixed. We shall prove that there is a polynomial such that

AE)=[sdu

Then @ is a measure oM . | (2)- P(Z)| <10,000w 6 ) K) (2

By (1), this proves the theorem. Our first ohjeetis the

+t)dy=| sdu+| td 2 2
IX(S Jau '[XS H '[X . ) construction of a function PeC (R) such that for allZ
Proof : If S and if BB, are disjoint members ol |f(Z)—<D(Z)| < w(0), 3
whose unri]on isE, the countarl?le aciditivity of! shows that | (9D) (Z)| 2a)(5) 4)
AE) =Y au(h N E)=2 a3 HANE) A
- 1 @P)Q) o
=SS au(A N E) = ZﬂE) ®(2) = ﬂjxj e G AL O

r=1 i=1

Where X is the set of all points in the support@‘ whose
Also, #(¢) =0, S0 that¢ is not identicaII)P° .

distance from the complement K does notJ (Thus X

Next, let S be as before, Ieﬁl’ B be the distinct values contains no point which is “far withinK .) We construct®
of tand let j ={x (% _'BJ} If Eil AN BJ’ the as the convolution off with a smoothing function A. Put
- r)=0.r>0,
[l (s+du=(a + B)UE,) A =0 F>9puy
]
sdu+| tdu=au(E;)+ B uE;) 3 r?
and 5 '[Ei l : : " Thus 2) a(r) :7(1_?)2 (Osr<9), (6)
holds with 5 in place of X . Since X is the disjoint union And define
= (1<i<n,1< z)=a(|z 7
of the setsE” (l=isnl<j<m), the first half of our Az) = (| |) (7) o
proposition implies that (2) holds. For all complexZ. It is clear that'A“‘:Cc(R ) . We claim that
j A=1, (8)
Theorem 1.1: If K is a compact set in the plane whose&’
complement is connected, if is a continuous complexJ- 0A=0, )
function on K which is holomorphic in the interior of , and if R
>0 , :
' then there exists a polynomlaP such that 0A =—— 10
[od=155  4o

= <
|f(z) P(Z)| € forall ZK i the interior of K is

empty, then part of the hypotheS|s 's vacuouslysted, and The constants are so adjusted in (6) that (8) ho({@mpute

feC(K
the conclusion holds for every (K Note that K need the integral in polar coordinates), (9) holds siyriptcause”
to be connected.

IJESPR
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has compact support. To compute (10), exp%sin polar

0 =0,
coordinates, and note tha 06
a - '
or ~ &
Now define
®(2) = [[ f(z-0)Adédn = [[Az-O)f (Q)dédn (1)
f

Since ' and A have compact support, so dd®s since

d(2)-f(2)
= [[1f(z=0) - f(21AHdédn (12)

g AY=0  [¢]>0

" (3) follows from (8). The

dlfference guotients of A converge boundedly to the

corresponding partial derivatives, smce ( ) Hence
the last expression in (11) may be dlfferentlatenﬂau the
integral sign, and we obtain

(00)(2) = [[ 0A)(z- ) f ({)dédn
= |[ fz-O)om()dédn

= [[[1(z-0) - 12RO dédy  23)

The last equality depends on (9). Now (10) and ¢ (4).

If we write (13) wnthX and Y in place ofaq)’ we see

that @ has continuous partial derivatives, if we can shioa¥
0® =0 jp G, where G is the set of allZEK whose

distance from the complement L exceed55 We shall do
this by showing that

®(2)=1(2) (zG);, (14)
Note thataf = 0 in G , since f is holomorphic there. Now
if zG, then £~ Z is in the interior ofK for all 4 with

<<

therefore gives, by the first equation in (11),
P(2) = jo a(r)rar jo f(z-ré%)do
3
=271f (2) jo a(ryrdr = f 2 A=1(2) (15)
R
For all £ € G , we have now proved (3), (4), and (5) Th

definition of X shows thatX is compact and tha¥ can be

33

covered by finitely many open disc:l:s)l""’l:)n ' of radius

20

2
' whose centers are not itk Since S ~K s
connected, the center of eaclz:?}i can be joined té® by a
.32 _K D. .
polygonal path in . It follows that each ! contains a

E., .
compact connected set!’ of diameter at Iea&a-' so that

2 _ =
S I is connected and so tha|§ nE=¢ with
2 _
=20  There are functionsgi‘gH (S~ and
b. . iy
constants ! so that the inequalities.
(<. z)\ (16)
1 4,00052
Q({,2)- |< 17)
z-¢ |
Holdfor JadZDD
Qj(Z,Z)—gj(Z)+(Z—b,-)gj(Z) (18)
Let Q be the complement oltEl u..us,. ThenQis an
open set which containsK-  Put X=Xnbh and

X;=(XnD)=(X,0..0X;,), . 2<j<n,

Define

R(.2=Q(.2)  ({eX;zeQ)  (19)

And

F(z)——jj(am)mR(z z)d¢dn  (20)
(z € Q)

Since,

F(2)= j j (0P)({)Q,(¢,2dédy,  (21)

j=1
(18) shows thatF is a finite linear combination of the

The mean value property for harmonic functlon@nctlonsgj and g] HenceF‘gH (). By (20), (4), and (5)

we have
26(3)
F@-o@|<= ~([IR¢.2
-1 dedn @zeQ) (22)
z-¢

e
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Observe that the inequalities (16) and (17) arélvaith R 1 0
e g e e aties o) sa G @i = - [ ag]” a¢dr_—j $(s,6)d6 (5)
in place of *! if -3 andZ € **Now fix %€ ", put ;T 0,6(.8) - f @)

— 6 - Y, ’ - i i i
{=z+pe’, and estimate the integrand in (22) by (16) ﬁs uniformly. This gives (2)
p<49, c40< p. . . . y;

y (17) if The integral in (22) is then a XZOk| X,,..X,,

seen to be less than the sum of If if Ua 5 and [ ! ] IEBe”

50 1 \ XX =X""0a , and soA satisfies the condition— .
2m j (—+—]pdp 8080 (23 Conversely,
And O 6 XN)( D dsXA)=> ¢, d; X" (finitesuns),

- 4,000 | - "

2 5 ,0 ———pdp=2,000D0 . (24 and so if A satisfies(D , then the subspace generated by the
Hence (22) yields monomialsx ,a[la' is an ideal. The proposition gives a
|F(Z) ;:(D(ZI-)I| ;6’?(0%”5-) ZQ £Q) (@5 classification of the monomial ideals hw[ et "'X”] . they
since © £ H(Q), » and S"~K is connected, are in one to one correspondence with the subSets [ "

Runge’s theorem shows thaf can be uniformly

approximated onK by polynomials. Hence (3) and (25)°20Sfing
show that (2) can be satisfied. This completegtbef.

(D For example, the monomial ideals l|(r[X]

X", nz1

, and the zero ideal
“laDA)

are exactly the ideal

' p2
Lemma 1.0 : Suppose fECc(R ), the space of all (corresponding to the empty ét\.) We erte<
continuously differentiable functions in the planejth for the ideal corresponding tb (subspace generated by the

compact support. Put Xa aDa)
1(o0 .0 '
° zi(a_ﬂa_J @
n
X .y LEMMA 11. Let S be a subset df . The the idea®
Then the following “Cauchy formula” holds: X7 ¢0S
1 0F)Q) generated by ’ is the monomial ideal
f(2=—— J dédn corresponding to
ﬂRz Z_ z df
(¢ =&+in) (2) A:{,GDD”|,3—0’DD", someaDS}
Proof: This may be deduced from Green’s theoremvader, Thus, a monomial is it if and only if it is divisible by one
here is a simple direct proof: tth X aD| S
— i6 of the
pyt 9(r,0) = f(z+re”), r>0,6 0 aD<Xﬁ|,BDA>
g { =2+ re?, the chain rule gives PROOF. Clearly A satisfies' 7, and .
— n
0)(Q) 1 4|0 +i 0 4(1.6) 3) Conversely, if'BDA, then'g a il for some@ US|
==’ —+——|g(r, _ -
2 or roé and XP = XX Ua. The last statement follows from
a B _ n
The right side of (2) is therefore equal to theiﬂjmsg -0, the fact that XTX" = f-alll . Let ADD "
of
1J_wJ_2,,(a¢ i a¢j satisfy(D). From the geometry ofA\, it is clear that there is
-= “Z+-2* [dad (4) _
o raf a finite set of elementsS {al’"HS} of Asuch that
={p00"|B~-a,00°, some o, 0} (e @S
For each” >0,¢ is periodic ine' with period 27T | The
integral ofa¢/09 is therefore 0, and (4) becomes
IJESPR
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df
a=(XlaOA = . . . .
< | > is PROOF. For n=1 kX] is a principal ideal domain,
) ?(ai a S which means that every ideal is generated by siafgment.
generated by the monomials "™ - We shall prove the theorem by induction Bn Note that the

KXo Xy 11X = K XX,

are the corners ofA) Moreover,

DEFINITION 1.0. For a nonzero ideal® in obvious map is an
k[Xl,...,Xn] we 1ot ET@) 1o the ideal generated by isomorphism — this simply says that every polyndmfiain
{LT(f)| f Da} N variables Xy Xy can be expressed uniquely as a

polynomial in Xy with coefficients ink[ Kypeoos X“]:

LEMMA 1.2 Let @ be a nonzero ideal ink[Xl’""X”] - F(XL X)) =a (X, X XK+ e KX
then (LT(a)) is a monomial ideal. and it equalsThus the next lemma will complete the proof

LT oL T ,....,0 Oa
( (91) (gn ) for some G-+ . LEMMA 1.3. If A is Noetherian, then so a|SO%X]

PrOOF. Since (LT(@) can aiso be described as the ideSROOF- For a polynomial

generated by the leading monomials (rather tharlehging f(X)=a,X"+a X' *+..+a, aOA, a,#0,

terms) of elements of .

I' is called the degree 0? , and % is its leading coefficient.
_ a . k[X y ""Xn] _ We call 0 the leading coefficient of the polynomi@l

THEOREM 12, Every ideal < in S Let @ be an ideal inA{ X] . The leading coefficients

- .a= Yooy :
finitely generated; more precisely, (8,,---8:) where  of the polynomials ir@ form an ideal® in A, and since
0,s..-.0 ) .
1 SLaTr(e )any elements off whose leading terms A is Noetherian@ will be finitely generated. LeBt O
a '
generate - be elements off whose leading coefficients generde, and
a . . .
\Ij’vI:OOF. Let . On applying the division aIgofri|rtlr(;|m,Iet [ be the maximum degree cﬁi  Now let f Oa, and
—_— S
f=ag,+...+ag, +r, a,r Dk[Xl,...,Xn] supposef has degreeS~ T | say, f=aX"+.. pen
- ' ala ,
where eithe” =0 or no monomial occurring in it is divisible » and so we caanrlte
LT(g) r=f->ag Oa a=) ha, hOA
by any /. But ! , and therefore q-leeding ficent of g
LT(r)OLT(a) =(LT(9,),...LT (9,)) implies that Now
every monomial occurring inf is divisible by one in _ el = ’
f=200X7, [=degl )y ¢ gogrees deg(f ).

LT(g) . Thusf =0, anng(gl""’gS).

By continuing in this way, we find that

= \
f=f mod@, ,.-On ) With f a polynomial of

DEFINITION 1.1. A finite subsets_{gl’| ""gS} of an Y
degreet <I' . For eachd <T , let be the subset ofA

deal @ is a standard ((Gr obner) ..o for@ jf consisting of 0 and the leading coefficients ofpailynomials
(LT(gl)""’LT (gs)):LT (a) In other words, S is a

standard basis if the leading term of every elenwn®is Y410+ 9am, be polynomials of degreéi whose leading

in & of degreed; it is again an ideal in A Let

divisible by at least one of the leading termshef gi. coefficients generatgd. Then the same argument as above
K[ X X ] shows that any ponnomiaFd in & of degreed can be
THEOREM 13 Thering """ ""ndis Noetherian i.e., f,=1f,, MOd@y 1Oy m ) inpr T
every ideal is finitely generated. written ‘ M~ With "d-1 of
IJESPR
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degree= d-1 on applying this remark repeatedly we ﬁn?inding domains X such tha%( DA+[X - X], and such

that ft 0 (gr—l,l’ G am, 901G o, : Hence tha’l[)f(ijrdgny d:)T?inYY also sa_ltisffying this equatithrere is an
embedding of X to Y --- a pair of maps
£, 0(0y 909 11+ 8r 1, Doz o 9 P P

f
and so the polynomialgl’""go'”b generate? X QR Y
One of the great successes of category theory npater Such that
science has been the development of a “unifiedrified the fRo f = id,
constructions underlying denotational semantics. the R -
fof~0id,

untyped/] -calculus, any term may appear in the function
position of an application. This means that a mdalaif the

A _calculus must have the property that given a tbrwhose Where fOg means thatf approximatesg in some
.ddD ) ) ordering representing their information contente Key shift
IS ' Also, the interpretation of a ot hergpective from the domain-theoretic to the engeneral
functional abstraction likedX . X is most conveniently category-theoretic approach lies in considering dt &s a
function on domains, but as a functor on a categofry
domains. Instead of a least fixed point of the fiomg F.

interpretation

defined as a function frorrPtOD , which must then be

ID - D|-D
regarded as an element of D. Ifle/t [ ] be the o K K
function that picks out elements of D to repressaments of Definition 1.3: Let K be a category anff 1K — ~asa
[D N D] g @:D - [D N D] functor. A fixed point of F is a pair (A,a), wherfeis a K-

be the function that object anda: F(A) - A is an isomorphism. A prefixed

maps elements of D to functions of D. Siniae( f) is point of F is a pair (A,a), where A is a K-objectdaa is any

_ J _arrow from F(A) to A
intended to represent the function as an element of D, it o —chain : ) )
W) = f Definition 1.4 : An W~ CNAIN iy 3 category K is a diagram
makes sense to require théf( '’ that is, of the following form:
woy =id S

=Pl Fyrthermore, we often want to view everyA = D, ,D D
element of D as representing some function frono D tand

require_ that elements representing the same funtioequal Recall that a coconé of an ¥~ chain A is a K-object X
;//t?;’éas)) =d and a collection of K —arrowi’ui D - Xliz 0} such
or that H = Ha0 fi for all 120 | we sometimes write
Yop=id, H:A = X 35 a reminder of the arrangement HtS

The latter condition is called extensionality. The®nditions components Similarly, a coIimi’fI:A - X is a cocone with

: and . . . _ .
together imply that?aNAY are inverses--- that is, D iSthe property that i’ 128 = X is also a cocone then there
isomorphic to the space of functions from D to Battcan be _ o - X X'
the  interpretatons  of  functional  abstractiongXists a unique mediating arro' X —~ X such that for all

[ ] Let us suppose we are working with the ! Hi_ Colimits of @=ChaiNs are sometimes
untyped/ —Calculus | we need a solution ot the equatiomeferred to ag?~ COlIMits pyaly, and” —chain j,
D DA+[D - D] is a diagram of the following form:
' where A is some predetermined fo f; f,
domain containing interpretations for elements of Each A =D, D D, ... o Ui X 5 A

— M1
element of D corresponds to either an element afrAan A con of an

[D - D], , ) . «f® —chain A is a K-object X and a collection of K-arrows
element of with a tag. This equation can be

solved by finding least fixed points of the functio {'ui D fiz 0} such that for a||i 20,4 =1 0/Ji+1_ An

F(X)= A+[X - X] from domains to domains - that is®” -limit of an @ ~ChaiN A js a coneH: X -4
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. v X' . distribution. First how this d indeed yieldjoint
with the property that i’ - X - Aljsalsoa cone, then there istribution. First we show this does indeed yi@djoin
0<P(X,X,,..X, <1 or

¢ Probability distribution. Clearly,
i >0 K = 0 all values of the variables. Therefore, to showhaee a joint
all 120,44 0K =V, . We write X (or just D) for the distribution, as the variables range through atirtipossible
C . . . values, is equal to one. To that end, Specifiedditiomal
distinguish initial object of K, when it has onendaD A distributions are the conditional distributionsythetationally
for the unique arrow front! to each K-object A. It is also represent in the joint distribution. Finally, we osh the
f f2 Markov condition is satisfied. To do this, we nesftbw for

convenient to WriteA =D D, e to denote all of 1SK<N a¢
P(pa)#0,if P(nd, |pa, )# O

exists a unique mediating arro|6v: X - X such that fo

—_ / M >
A except DO and fo. By analogy,'u is {’u' i _]} . For

the images of & and # under F we write and P(x |pa)#0
F(fo) F(f) F(f,) —
F(A)=F(D,) _. F(D,) _, F(D,) _, whenever € P(X [nd, pa,) = P(x [pa, ).
and F(1) :{ F(u)li= 0} Where ND, is the set of nondescendents %)<f‘< of in G.
=l _ _ o e PA O ND,
We write F' for the i-fold iterated composition of F — that isSince , we need only show

Fo(H=f,F{(H)=F(NF(N)=FF() o

With these definitions we can state that every oot
function on a complete lattice has a least fixeth{po

P(xk |ndk) = P(Xk l Pa ) First for a givenk, order the

nodes so that all and only nondescendentg(&brecedexk

in the ordering. Note that this ordering depends l%r,l
Lemma 1.4. Let K be a category with initial objeéf! and let whereas the ordering in the first part of the prdoés not.

— i Clearly then
F:K - K pe afunctor. Define th&~Chaina
y ND, ={X,, X;, ... X\ 1}

10~ F(D) F(1D-F(D) , F(0-F(D)
A=0 _, F@O) _ FXO) _ o Let
it both HB—D ang FIDIF(B) - F(D) 4 D, ={Xk+1,Xk+2,...Xn}
colimits, then (D,d) is an intial F-algebra, where Z
d:F(D)-D is the mediating arrow frorﬁ('u) to the follows <%

coconeX
th
We define the M cyclotomic field to be the field

Theorem 1.4 Let a DAG G given in which each node is aQ[X]/((Dm(X))
random variable, and let a discrete conditionalbphility

th
Where CD”‘(X) is the M cyclotomic
distribution of each node given values of its ptgdén G be Q[X]/((Dm(x)) ®.(X) has Oleglree¢(m)
specified. Then the product of these conditionatritiutions

yields a joint probability distribution P of the nables, and qyer Q since @, (x) has degree¢(m) . The roots of

polynomial.

(G,P) satisfies the Markov condition. ® (X) h

m are just the primitive™ roots of unity, so the
Proof. Order the nodes according to an ancestral ordeligig
X X X complex embeddings OQ[X] / (CDm(X)) are simply the

Irorzaerreee Nbe the resultant ordering. Next define. #(m)
maps

PO%%--%,)= P&, B, P&, Pa.)- QX! (@ () - C,
P | P, P, | p8,), 1<k=<m,(k,m)=1, where

k
: O, (X)=¢m
Where PA is the set of parents otX' of in G and k( ) fm

P()glpa.) is the specified conditional probability
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th .0l = .

gtmbeing our fixed choice of primitivé! root of unity. Note Since [Q(Em”)'Q] ¢(mn); this  implies  that
k . =

that Em DQ(E”‘) for every K; it follows that Q(fm,fn) Q(fnm) We know thatQ(fm’E”) has degree
= K mn

Q(Em) Q(fm) for al K relatively prime to M . In ¢(mn) over Q, so we must have

. . o [Q(&,.€,): Q)] =9(n)
particular, the images of the ! coincide, so and

Q[X] H(®n(X) is Galois overQ. This means that we can [Q(fm,g‘n) :Q(fm)] =¢(m)
write Q<) for Q[X]/(CDm(X)) without much fear of

ambiguity; we will do so from now on, the identdion [Q(fm)5Q(fm) n Q(fn)]z(b(m)
being fm = X'One advantage of this is that one can easiyhd thus thatQ(fm) n Q(En) =Q

talk about cyclotomic fields being extensions ofeon
another,or intersections or compositums; all ofs¢h¢hings PROPOSITION 1.2 For anymand n

take place considering them as subfield Gf We now

investigate some basic properties of cyclotomidd§ie The & ,E)=0(&
first issue is whether or not they are all distiiotdetermine QA m n) QA [m'”])
this, we need to know which roots of unity lie irfAnd

Q&) & Q) N Q&) =AY )

th . . . . m,n m,n .
2m” oot of unity. We will show that this is the onlyaw in here[ ] and( )denote the least common multiple and
which one can obtain any nom" roots of unity. the greatest common divisor Band " respectively.

.Note, for example, that iMis odd, then |

fi
K where

. m=pd... & and p" ...
LEMMA 1.5 If Mdivides", thenQ(Em) is contained in PROOF. Write Py P P --B

Q(fn) the P are distinct primes. (We aIIO\ﬁ or fi to be zero)

m= <tm: Eq ‘,tez---Qth
PROOF. Since fy =4 we have $m UQ), so the Q)= P ) P ) (pk )

result is clear

- Q&) =QAE,)QE, )-QE, )
LEMMA 1.6 If Mand Nare relatively prime, then :

Q& &) =QE ) s
and Q& E)=QE,,)--QE . RE L ).QE,, |
Q&) N QE)=Q = QU )QAE, ) Q. RE, )
(Recall the Q(Em' E”) is the compositum of =Q(¢ plmax@,fl>) ------ Q @tplmx@,fk )
Q) and Q&) ) QU )
= Q(é[m,n] )

th
PROOF. One checks easily théfﬁfn is a primitive M root
of unity, so that

Q(f ) DQ(E ’5) An entirely  similar computation shows that
™ n Q<) N Q(S,) = QA

Q0 &):Q] <[QE): Q][ Q) (o) QL) =)

=g(m)@(n) = g(Mn); Mutual information measures the information transfe

when X is sent andyi is received, and is defined as
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P/) |(X1Y)=ZP(>§'Y,-)

(%, y)=log, (y)' bits ()
s =T P05, y,)log{P( J

In a noise-free channel, ea%is uniquely connected to the

corresponding)g , and so they constitute an input —output

1
pair (%, %) for which _; P()ﬁ’yj)logg W
POy )=Land 1 x.y,)=log, 5~ Y,

P( )b|ts that is, the 1

transferred information is equal to the self-infatian that ZP()Q y,)logz P( )
i.j i

corresponds to the |npu)tg In a very noisy channel, the

1
output yand |nput)gwould be completely uncorrelated, and Z{P(/ )P(yl }logz ()ﬂ)

P(* y)=P((x) - 1
S0 j and also 1(x.y;)=0 'that is, there is Z P(x)log, —— P(x) =H (X)
no transference of information. In general, a giviannel ! X
will operate between these two extremes. The mutu - _ X
information is defined between the input and thgpouof a P{X’Y) H(X)=H( /Y)
given channel. An average of the calculation of tmetual _ 1
information for all input-output pairs of a givehannel is the H (%) = Zi’j P(Xi 1Y ) |092T
Py )

average mutual information:

P( / Where
(XY p | p o usually called the equivocation. In a sense, thévegation
6= Z () 06,0 = Z .3, )log; P(x) can be seen as the information lost in the noisyohl, and is

bits per a function of the backward conditional probabilityhe

symbol . This calculation is done over the inputl autput ) \ )
alphabets. The average mutual information. Theofghg Observation —of an output symbol ! provides

expressions are useful for modifying the mutuabinfation H (X)-H ()V)
expression: Y” pits of information. This difference is the
X Y. mutual information of the channel. Mutual Inforneerti
P(x.y,) =P P, = PCYP(X) Properies Since
i
d _ Y.
, POy, 1P =PC 4 P(X)

Py) =X P P(X) o

i X The mutual information fits the condition

_ : 1(X,Y)=1(Y,X)

P()ﬁ) - Z P(%j)P(yi) And by interchanging input and output it is alagetthat

' = “H(Y
Then (X, Y)=H ()= H(Y4)

Where

H(Y) = ZP(Y,NOQZ P( 3

This last entropy is usually caIIed the noise gmird hus, the
information transferred through the channel is diféerence
between the output entropy and the noise entropy.
Alternatively, it can be said that the channel malitu
information is the difference between the numberbds
needed for determining a given input symbol befarewing
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the corresponding output symbol, and the numbembitd
needed for determining a given input symbol afteowing
the corresponding output

1(X,Y) = H (X)=H (%K)

As the channel mutual information expression isfience
between two quantities, it seems that this paranoate adopt
negative values. However, and is spite of the faat for

LSH(Xy.
some Yi ( yJ) can be larger tha#| (X) this is not
possible for the average value calculated ovahalbutputs:

symbolamplitude-continuous

Lemma 1.7. Given an arbitrary restricted time-discrete,
channel whose restrictions

determined by setsF”and whose density functions exhibit no
dependence on the st&gelet Nbe a fixed positive integer,

and P(X) an arbitrary probability density function on

Euclidean n-space. p(y [x) for the density
Po(Yareees Y X0 X, and F for F, . For any real

are

P/ ) ( ) number a, let
2 P(x., Y,
P(x,y,)! L =Y"P(x,y,)log——21" _ Jan PY1X)
ZJ (% y;)log, P(%) ZJ (%.y;)log, PO)P(Y,) A—{(x, y)_logTJO>a} 1)
Then
P(x)P(y;) Then for each positive integ¥r, there is a coddt:MA4)

_l(le):ZP(Xi’yj)Wso such that

i,j i1 Y —a
Because this expression is of the form A<ue”+ P{(X Y)H A} * P{ X0 F} (2)
M Q Where
> Plog, (F')s 0 P{XNOA =] .{pxyXxdy,  p&y)=pEIPY Ix)
i=1 i and
The above expression can be applied due to theorfact P{XOF) :j fp(x)dx
I:)()Q)P(yj)'which is the product of two probabilities, S%y o0f- Asequencex(l) OF such that
that it behaves as the quantity , which in this expression is P{Y OA,|X = x(l)} >1-&

) <
a dummy variable that fits the conditi(Zi Q _1. It can be where A :{ y: (X, y)SA};
concluded that the average mutual information iscen-
negative number. It can also be equal to zero, whennput choose the decoding se% to be Ax(l) . Having chosen
and the output are independent of each other. Atagl NG

(k-1)
entropy called the joint entropy is definedas & e X and Bl’ ""Bk-l, selectxk UF such that

1 k-1
H(X,Y)=) P(x.y,)log
Z N% B0y P{YDAXM -JB X :x‘k)}zl—g;
P(X)P(y;) =1
TSP o0y B = A, -8
! 1 J Set X i=L "1 If the process does not terminate
+» P(x,v.)log, ——— (i)
lz]: X.3,)106, P(X)P(Y;) in a finite number of steps, then the sequen@els and

decoding setsa’ 1=12,..u form the desired code. Thus

Theorem 1.5: Entropies of the binary erasure channel (BE@gsume that the process terminates ftsteps. (Conceivably
The BEC is defined with an alphabet of two inputsl ghree t=0 ). We will show t{2U py showing that

outputs, with symbol probabilities. -a
" = e<te®+P{(X,Y)OA +P{X OF}
P(x)=a and P(x)=1-a, transition follows.

probabilities
Y3/ y=1- Y2/ )=
P(*3; ) =1-p and P(%%)=0,

and P(%3 ) =0

. We proceed as
and

and P(ylxz) =p

and P(y3 X2) =1-p
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B=Ut_:lBj. (If t=0, take B=¢@). Then note that ifC is an ideal in AXB and (a’b)DC, then
’ (8,0)= (@,b)(1,0)00c ,,(0.b)= (a,b)(0, 1Y

. This
P{(X YU A} - (XJ)DA p(x, y)axdy shows thatC = a*b with
a={a|(a,b)dc some bOb}
=[p0 [ plylx)dydx and
X YOA b={b|(a,b)Oc some ala}
=[P | plylx)dydx+ [ p(x)
Let X yOBn A, x Let A be a ring. AnA-algebra is a ringB together with a
homomorphismIB ‘A-B . A homomorphism of A -
Algorithms algebraB -Cisa homomorphism of ringg: B-C

Let A be a ring. Recall that an ideal a in A isubset such gch that¢(i3(a)) =ic(a) for all aLA  An A_algebra
that a is subgroup of A regarded as a group urtdtian;

alla,r0A=rallA 0B
The ideal generated by a subset S of A is thesatgion of all there exist elementat’ % such that every element of

Bis said to be finitely generated ( or of finite-eypver A) if

ideals A containing a ----- it is easy to verifyaththis is in fact B L ﬁ\e )
an ideal, and that it consist of all finite sumstbé form can be exrzr'gz\)ssed as a polynomial in the with
. i . .
rs - ={S . ... coefficients in , i.e., such that the homomorphism
z' I with HDA’SDS. WhenS {%’ ’Sm}, we P

. (SyeSy) o A[Xl""’X”] - B sendingxi to Nis surjective. Aring

shall write for the ideal it generates. _ ALB o e S

homomorphism A — is finite, and B is finitely
. {a+blababOb} . _

Let a and b be ideals in A. The set IS generated as an A-module. tbe a field, and le\be a

an ideal, denoted by@*P . The ideal generated by K _aigebra. 11 % O'in A | then the magK — A is injective,
{ablaDa,bOb}

is denoted by ab  nNote that We can identifyk with its image, i.e., we can regalﬁas a

Zaib subring ofA . If1=0in a ring R, the R is the zero ring, ,i.e.
abJanb clearly @b consists of all finite sum ' R=

{0} N k . .
— . Polynomial rings. Let®™ be a field. A monomial
with aDa and th , and if a (al""’am) and

b=(b,...b) ab=(ab,....ab ,..a b ) a in Kppeon X is an expression of the form
, then ! n 7 Let xlalxr?n, ajDN

be an ideal of A. The set of cosets &fn A forms a ring The total degree of the

Ala anda>ataisa homomorphisn?' A A/a- monomial is 261 . We sometimes abbreviate it by

-1 a — n
The maprq) (0) is a one to one correspondenceX ,a=(a,....a,)t0 . The elements of the polynomial

between the ideals o‘f\/ a and the ideals oA containinga ) k[xl, ""Xn] N
pzA abOp=alp ,, "9 . are finite sums
b0 o AlD. zcal....anxl X C, .. Uk, a 00

P Thus P is prime if and only it P is nonzero and With the obvious notions of equality, addition and
has the property thatab =0, b#0=a=0, ie. multiplication. Thus the monomials from basis for

Alp is an integral domain. An ided is maximal if k[xl'""x”] as
m#| A

An ideal P if prime if and

a k -vector space. The ring

and there does not exist an idéhicontained strictly k[Xl,...,Xn] is an integral domain, and the only units in it
betweenMand A, Thus Mis maximal if and only ifA/ M are the nonzero constant polynomials. A polynomial
has no proper nonzero ideals, and so is a fielde Kwat™M f (X0 X))
maximal = Mprime. The ideals oAXB are all of the

form @%b with @ andD ideals inA and B. To see this, "€ Obvious factorizations,

is irreducible if it is nonconstant and has only

i.e.,f - gh: 9

orh is
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—_ a aj
f=a, X+, X%+, a,>a,> ..., a,zC
Then we define.

kX o .
constant. Division in [ ] . The division algorithm allows

us to divide a nonzero polynomial into another: Tetand g

f

e The multidegree of to be multdeg(f )= a

be polynomials ink[x] with 9 #0; then there exist unique f f a
[ ] f= r » The leading coefficient of to be LC(" )= %;
polyn0m|als such that a9 with either

The leading monomial off to be LM(f )= X%,
a, X

r=0 o ded < degg. Moreover, there is an algorithm for

deciding whetherf [(g) , namely, find I' and check e The leading term off to be LT(f )=
whether it is zero. Moreover, the Euclidean aldnnitallows _f =4XY?Z + . .

[ ] For the polynomial 1 the multidegree is
to pass from finite set of generators for an ideal toa (1,2,1), the leading coefficient is 4, the leadmgnomial is

single generator by successively replacing eachr pai xy2z and the leading term i54XYZZ The division
generators with their greatest common divisor. ' '

2
algorithm in k[xl' "'x“] . Fix a monomial ordering in

f

(Pure) lexicographic ordering (lex). Here monomiare

ordered by lexicographic(dictionary) order. Moregisely, let Suppose given a polynomiall and an ordered set

a=(a,.a) andﬁ: ®...b;) be two elements of n; (9,--95) of polynomials; the division algorithm then
> a B . . . o
then &> 5 and X7 >X (lexicographic ordering) if, in constructs polynomials &85 and T such that

the vector differencd ~ B0 , the left most nonzero entry f =a,0, +...+a,g, +r
is positive. For example,

2 354, 4
XY?>Y3Z*% X¥*%Z >X3YZZ_ Note that this isn’t

quite how the dictionary would order them: it woutdit Step 1: If LT(gl)lLT(f), divide % into f to get

XXXYYZZZZ  after XXXYYZ | Graded reverse . _ LT(f)
lexicographic order (greviex). Here monomials amteced by | = &8, th, &= LT(g) O k[xl’ n]
total degree, with ties broken by reverse lexicpbia 9

ordering. Thusa>'B it zai >Zb or zai :zb If LT(g,)ILT(h) , repeat the process until
LT(f,)

Where either ' =0 or no

monomial in! is divisible by any ofLT(gl)""’LT (gs)

and in B the right most nonzero entry is negative. For =ag,+ i (diffefental) with not divisible by
example: LT(9,)

X*YZ7> XN Z* (total degree greater)
XY°Z%>XNZ®,  XNZ>XNZ?

. Now divide 9 into fl, and so on, until
f:aigl+"'+asgs+r1 With LT(rl)

not divisible by
=LT(r) +r

any Step 2: Rewnte
. kl X,,..X . . o f
Orderings on [ 1 “] . Fix an ordering on theand repeat Step 1  with 2 for -
kX, X . f=ag,+.+ag,+LT()+r : a’'s
monomials in [ 1 “]. Then we can write an element - ° Y73 (different )
k[X ] Monomial ideals. In general, an ide8 will contain a
1 n

in a canonical fashion, by re-ordering it§0lynomial without containing the individual ternté the
elements in decreasing order. For example, we warité

— 2
t = AXY2Z 4+ 472 — BX 34 TX 27 2 polynomial; for example, the ide:?l_ (Y*-X%) contains

Y? - ><3but notY2 or Xg.

as
f =-BX*+7X?Z?+4XY?’Z+ &Z* (ex) DEFINITION 15. An ideal @ is monomial if
or anX”Da:X"Da
f =AXY?’Z+7X?Z%*-5X>+ &Z* (greviex) ¢, #0
all @ with @

Lop 208 X OK[ Xy, X

”] , in decreasing order:
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PROPOSITION 1.3. Let @ be a monomial ideal, and let

={a|x" D4} o y
Then A satisfies the condition
abA pO0"=a+p0 O and 2 is thek-

subspace of X Xo] generated by thd< THA.

E[ﬂ(cj(”)[””']j:zp[c(") =d []e)™
i= c j=
[m;]
n n C 1
> 1=l
cejzm; foral j [ j=1 i=1 ) JCJ-!

ﬂjﬁél{zw - m}” '(1d)'

Conversely, ofA is a subset of " satisfying(D), then the

k-subspace a k[Xl,...,Xn] generated by This last sum simplifies to the indicato?'(m— n),
. AT d =0

{Xa la Tl A} is a monomial ideal corresponding to the fact that t~ M= 0, then ) for
) ) L . J>n-m, and a random permutation %“m must have

PROOF. It is clear from its definition that a monomidieal d d ")

a . Kk #([Xl, ..,Xn] some cycle structur(g 1o "‘m). The moments of '}

is the ™ -subspace o . follow immediately as
generated by the set of monomials it containg<if & and E(CJ(”))“] = j‘f]_{ jr < n} (1.2)
X?0 k[Xl,---,Xn] We note for future reference that (1.4) can alsavliten in
’ the form
If a permutation is chosen uniformly and at randoom the E[I—I(Cm))[mlj [l—lzlm j {Zn:jmj sn}, @.3)
C(n) =1

n! possible permutations inSn’ then the counts ! Z.
i there the 1 are independent Poisson-distribution random

E(Z))=1/]

cycles of IengthJ are dependent random variables. The joi
n — ¢ (n)

distibuon  of C (G oGy

Cauchy’s formula, and is given by

follows from variables that satisfy

The marginal distribution of cycle counts provide$ormula

" — el - CJ = n

PICT =d = N(n, % 1{2 JC n} l_l( ) (1'1)for the joint distribution of the cycle coungl " we find the
n
N distribution of ~J using a combinatorial approach combined

for cid + with the inclusion-exclusion formula.
Lemmal.7 For nonnegative integers Lemma 18 ForlSIsn,
e PICP =k =1 W'Z”( o ‘ @D

n (Im] _ n 1 m; n . 1=
E(D(C" ) ] (ﬂ[]] ]1{; I = n} a4 Proof.  Consider the set of all possible cycles of length

Proof. This can be established directly by exploiting]

[m]/ —_
C, =1/(c. —m,)!
cancellation of the form ) ( ) J)

' formed with elements chosen fro{%’z’"n} 50 that

=l
when | | . For each? U1 G

' consider the “property”™ @ of

¢ =m, which occurs between the ingredients in Cauch)qfavmg ' that is, G, is the set of permutationlsTDSh
formula and the falling factorials in the momentrite such that@ is one of the cycles of . We then have
m= m. — i
ZJ I". Then, with the first sum indexed by|G |—(n_J)!,
c=(c,..c,)00"
d=(d,....d 00"

dj =c;—m

since the elements ({fl’ 2, ’n} not in @

and the last sum indexed b);nust be permuted among themselves. To use thesianlu

exclusion formula we need to calculate the tesm which is
the sum of the probabilities of the -fold intersection of
" we have properties, summing over all sets bfdistinct properties.
There are two cases to consider. If theproperties are

via the correspondence
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indexed by! cycles having no elements in common, then the cm

vw So that ! converges in distribution to a random variable
intersection specifies ho elements are moved by the

I having a Poisson distribution with me% J5 we use the

(n) H
il fiter cn Lz Z 0P/ .
in the intersection. There af® I('rY) such intersections. hotation 471 where ~J 271 to describe

J
element in common, so no permutation can have tiahe

|
permutation, and there ar(é1 (i< n) permutations

properties, and thé -fold intersection is empty. Thus Theorem 1.6  The process of cycle counts conve.r?es in
S =(n=r))A(rj <n) distribution to a Poisson process [6f with intensity J
Il 1 ) 1 That is, asn - %
ji'rinl jr! CcMm,c ) -, Z,.2,,..) (1.1
i ion- i i Z,j=12,..
Finally, the inclusion-exclusion series for the ren of Where the £’ ] 2, are independent Poisson-
permutations having exactl|§' properties is
| E(Z j) ==
Z( 1) distributed random variables with )
120 Proof. To establish the converges in distribution onewsh
g
Which S|mpI|f|es to (1.1) Returning to the originaht-check i b>1, n - oo,
problem, we substitute j=1 in (1.1) to obtain thetribution of that ~ for — each  fixed as
the number of fixed points of a random permutati&or P[(C™,....C")=c] - P[(Z,,....,Z,)=C]
k=0,1,..n,
1 nk 1 Error rates

P[C™ =K] :—Z( -1’ =, 2.2) The proof of Theorem says nothing about the rate of

= convergence. Elementary analysis can be useditoatstthis

(n) — b = 1 . . . ) )
and the moments of  follow from (1.2) with j= cn rate when : Usmg_%ro][?ertles of alternating series with
. n>?2 ) (n decreasing terms, folf =U4.n,
particular, for ' the mean and variance ott are both ¢ 1 1
(€9,..C) = - )<[PIC” =K -AZ, =K

equal to 1. The joint distribution b S for any K (n-k+D)E (n-k+2)!
1<b<n hasan expression similar to (1.7); this too can k. 1

b T kl(n-k+1)!
derived by inclusion-exclusion. For any (Cl Cb)DD ( )

with m—ZI . It;(anllowithat
PC",....C5")=c] (n+Din+2 ;‘P[Cl(n =K-HZz,= k]‘ 1). @19

{ b [1j } Z e g Since
= (1) (—J — @.3) et 1 1 1
I:ll |2 0with I_ll ! Pz, >n = (n +1)'{1+n+2+(n+2)(n+3)+"')< N+ 1)

Iis - .
2= We see from (1.11) that the total variation diseabetween

L(C) P

o : ci,...,clv
The joint moments of the fird® counts b canbe . istribution and the distributionL(Zl)

obtained directly from (1.2) and (1.3) by setting

rnjﬂ:___:rnnzo OfZl
The limit distribution of cycle counts [A](C(n))} .
It follows immediately from Lemma 1.2 that for eafiked EStablish the asymptotics of under conditions
I as N oo, (A) and( Bow). where
i -k (n)y = (n) —
(n — ) i _ A(C™) = ﬂ ﬂ &
P[C” =K] aWe , k=0,1,2,..., i<n H]_Jq{ }
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and ¢ =1 /1) -1=00") as | — o, for some Whereg{”} (n,b)=0(b/n) under Conditions(pb)’(Dl)

g' >0. We start with the expression and (By) Since, by the Conditioning Relation,
pA ()] = on(Z) =11 L(CILb] [T, (C) =1) = LZ[Lb] [T, (2) =),
P[TOm(Z) =n] It follows by direct calculation that

M {1__£ (1+E, )} @) dy, (L(CIL b]), L(ZIL b))
Jr‘éjrjsgjsr It = dTv (L(TOb (C)), L(TOb (Z)))
P[T,.(Z) =] =max} P[T, @)=r]

ad . . —n—
=" exp! > [log(1+i*6d )-i~'6d ]} _PT(2) =n-r]

n {Z:‘ {1 P[Ton(2) =11 44
{1+O(n_1¢{'1,2,7} (n))} 1.2) Suppressing the argume#t from now on, we thus obtain
and dry (L(CIL b)), L(ZILb])
PIT,(2) =11 o o]
_ad o =2 PlTy, =] {1—*’”—_}
= Texp{z [log(1+i~6d )-i*6d ]} =0 PlTo, =01 |,

i1 B [n/2] P[Tob - r]

{1+ O(n_l¢{1,2,7} (n))} 1.3 Sr;/z PLTo, =11+ ; P[T,, =n

Where¢{l'2'a () refers to the quantity derived frofd . It X z P[T, =sI(AT,,=n—-94-RT,, =n—1 }
P[A,(C™)] 0 Kn™?®9 s=0

+

thus follows that for a constant

. [n/2]
K , depending o and theri and computable explicitly s Z P[TOb =rl+ ZO F{TOb =1]
r=

r>n/2

from (1.1) — (1.3), if Conditiongpb) and (Boy) are satisfied (V2 { P[T,=n-9-HT,,=n- r]}
ZP=0(7%) >0 * 2, PlTy, =9 P[T, =
and if °1 from some Y ' since, under these s0 [Ton =1

n_1¢{'1,2'7} (n) a

circumstances, both

to zero ad! = ®- In particular, for polynomials and square .
free polynomials, the relative error in this asyatjot The first sum is at mos%n ETy;

nd n_1¢{1~2? (n) tend +[§2:] PlTo, = 1] Zn: HT=9RT,=n-¢/ BT, =

s=0 s=[n/2]+1

the third is bound by

approximation is of ordeP " if 9 >1. ( max P[To, =s])/P[Ty, =n]
For0sb<n/8 4ngM2Mor iy M < 284050y (N/20)  3n |
d, (L(C[1,b]), L(Z[1,b])) n [5'5’5[0,1] .
0 0 3n . _ _ql
< d., (L(C[L b]), L(Z[L b])) wog oy M2, Pl =113 ATy, =9 5Jr -
= 5{7,7} (n,b), <1 10.4 (n)%

~ 6P[0,1] n
Hence we may take
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6¢f (n)
& (nb)=2nET, (Z){ 1+ 28l p
{7,7}( ) o (Z) 6P,[0,1]

6
* gp0.3jchosa (11 20) (1.5)

g ]

Required order under Conditior{spb)’(Dl) and (By), if

n n
S(e0) <0 ¢ not, (‘ﬁo.q ( ) can be replaced bit10-} ( )
in the above, which has the required order, withthe

P[Tbn = S] - F;[Tbn = S+1]’

finally to

-a+d &-4(n,b).
contribution of orderbn & for anyfy> 0 in {7'7}( )
Some improvement would seem to be possible, defitie

g(W) = l{w:s} _]{w:s+t} !

=gl — =S+
of the form PTy, =8 —HT,, =s+1 can be directly
estimated, at a cost of only a single contributidrihe form

leading a

function g by differences that are

+uV N . .

qq(n) ul(n)' Then, iterating the cycle, in which one
estimate of a difference in point probabilitiesirigproved to
an estimate of smaller order, a bound of the form

restriction on theri implied by S(e0) <00 . Examining the ||:>[Tbn =g - F{Tbn = S+t]| =q N2+ n‘1—6:1+f5) f
or any

(A)MD) (B, .
Conditions 17 and * it is perhaps surprising t0 5> 0 ¢ouid perhaps be attained, leading to a final rerro

find that(Bll) is required instead of ju&BOl); that is, that ootimate in order O(bn_l+n_al+5) for any 0>0

le, =0(@™™) &, (n,b
we should needz'zz i to hold for some (epjace {7'7}( b)- This would be of the ideal order

>
& 1. A first observation is that a similar problemsas O(b/n) for large enougrP' but would still be coarser for

. . . . b.
with the rate of decay ofit as well. For this reasont is Small

0

replaced byl This makes it possible to replace condition
with Pand N as in the previous section, we wish to show

(Ai) by the weaker pair of condition(spb) and (Dl) in the that

eventual assumptions needed %W} (n'b) to be of order |dy (L(C[1,b]), L(Z[1,b])) —E(n +1) 7|1~ 6| E[T,, — ETy|
O(b/n): iy 2

the decay rate requirement of order = is

S€rg (n,b),
shifted from‘gil itself to its first difference. This is needed to &..(nb)= O(n_lb[n_lb+ n—ﬁlz+5])
obtain the right approximation error for the randorappings Where {78 for any

example. However, since all the classical applicetimake
P | >p; 0>0 ynder Conditions(pb)’ (D) and (By), with B .
far more stringent assumptions about ﬁ*ﬂé ~ T’ than are The proof uses sharper estimates. As before, wen beigh

- (By,) N ) ) the formula
made in* 11, The critical point of the proof is seen where 0 0
the initial estimate of the difference d,, (L(C[1,b]), L(Z[1,b]))
m—g — (m —
PlTon” =8 = Ty" =s+] The factor (919 (), _ _ P[T,, =n-r]
D =D PlTy, =r]jl-—-—
r=0 I:)[TOn - n] +

which should be small, contains a far tail elenfeorn M of

O
the form qu(n)+u1(n), which is only small ifai>1’
0>0

Now we observe that

1-a+0

) for any ' since

n/2

being otherwise of ordep(n
a, >

. >
is in any case assumed. F%I"

- o(n™a*?) . :
to a contribution of order in the estimate of the
=g| — =S+
difference P[Tb” g F{Tbn s+1], which, in the
remainder of the proof, is translated into a cdwitiibn of

O(tn—l—a1+5)

' this gives rise

order for differences of the form
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|
P[Ty, = (AT =n=§ =R T, =n-1)

:n]

[n/2]

"2 AT

I:)[Tbn =
P[To, = n]

HT, =11

2l =1 (AT, =1

r=0

n

2.

s=[n/2]+1

<4nET; +(max P [Ty, =s])/P[T,

+P[T,, >n/2]

364052 (N1 2.b)
6P,[0,1]

X

<8n2ET2 + @.1)

We have
[n/z]m

| Z P[Ton =1
r=0

x({

n/2]

2 PlTy, =sl(AT,, =n-9 -RT,, =n-1{

(s- r)(1 et T, d}

i

) |

+

1

S -

I’IZF)[TOn = n]

{10, (D) + 20 D9)[1-6n*{K,0+ 4, O }}
6

S -

anP,[0,1]

+41-6n*ETE{ K0+ 4,4 (1)

3
HnPg[O,l]) b

ZP[TOb = I’]Z ATy =9 |5_r|

r=0

ETObg{lo,lz} (n! b)

( 1.2)

The approximation in (1.2) is further simplified bgting that

[n/2] B [W2] (S r)(l 5)
ZP[TOb—r]{S=O =40 }

o, =1 S,
B _g(s—r)@a-o6)
{z PIT, =9 $700°0) } |

(s—r)\l—ﬁ\
n+1
<P-Gn"ET,HT, >n/3)< J1-Gn°ETS ,

/2]

< Z P[Ty, =11 Z ATy =

s>[n/2]

(€C)

and then by observing that

47

_ _q(s-n@-6)
r>[§2] P[To, =T] {; ATy, =4 ntl }

<n*1-6|(ETy,PTy, >n/ 2]+ E(T, Ty, >n/2}))

< 4[1-6|nET,; 1.4)

Combining the contributions of (1.2) —(1.3), we ghiind tha
0 0
| dry (L(CIL b]), L(Z[L b))

—(n+1) 1ZP[T0b_r]{ZF{TOb_g(S Nt - 69} ‘

r=0
< £,4(n,b)
3

TR () 2,0)+ ETo8, 4,4 (1.0}

|

is seen to be of the order claimed

{5{10.5(2

24|1-6 ngog 0)

1.5
6P,[0,1]

+2n‘2ETOi{4+ 31-6+ )

n,b)

under Conditions(pb)’(Dl) and (By,)
S(0) < 0

&
The quantity {7'%(
, provided that

' this supplementary condition can be removed if

%iog (M) is replaced byqlﬁo-li( V' in the definiton of
‘9{7.3 (n’b)

, has the required order without the restriction on

the { implied by assuming tha%"(oo) < oo'Finally, a direct

calculation now shows that

ZP[TOb—f]{ZP[Tm d(s-n@ - 69}

r=0

:§|1—9| E[To, — ET|

—_— n
Example 1.0. Consider the poinp =(0,...,0p0

an arbitrary vectofl , the coordinates of the poirt= O+r
are equal to the respective coordinates of the ovect

rex=0¢.x") . r=(x,..x"

and X ) The vector r such as
in the example is called the position vector or tadius

vector of the pointX . (Or, in greater detailf is the radius-

vector of X w.r.t an origin O). Points are frequently spedifie
by their radius-vectors. This presupposes the ehoicO as
the “standard origin”. Let us summarize. We hewasidered

" and interpreted its elements in two ways: as gamnd as
vectors. Hence we may say that we leading with tthe

H:Dn Dn

. For

copies of i = {points}, = {vectors}
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Operations with vectors: multiplication by a numbesdition. (a,b)
Operations with points and vectors: adding a vettiar point cosa = |a||b| (4)

The angle itself is defined up to an integral nmléti

(giving a point), subtracting two points (giving/actor).[' "
treated in this way is called an n-dimensional naffspace.
(An “abstract” affine space is a pair of sets , $e¢ of points of 27T For this definition to be consistent we havetsure
and the set of vectors so that the operations aseabre that the r.h.s. of (4) does not exceed 1 by thelates value.
defined axiomatically). Notice that vectors in dfin@ space This follows from the inequality

“ " iti 21,12
are also known as “free vectors”. Intuitively, thaye not (a, b)z s|aj |b| (5)

fixed at points and “float freely” in space. From

) . . . known as the Cauchy-Bunyakovsky—Schwarz inequality
considered as an affine space we can precede iopyosite

(various combinations of these three names areieapjih
directions: 1 " as an Euclidean Spaég " as an affine different books). One of the ways of proving (5)dsconsider

space = U "as a manifold.Going to the left meanghe scalar square of the linear combinau%thb’ where
introducing some extra structure which will makee thf[JR 5 (a+th,a+tb)=0 is a quadratic polynomial in
geometry richer. Going to the right means forggttabout to o T

part of the affine structure; going further in toiisection will -~ Which is never negative, its discriminant mustléess or
lead us to the so-called “smooth (or differentijenifolds”. €qual zero. Writing this explicitly yields (5). Theiangle
The theory of differential forms does not requirey &extra inequality for distances also follows from the inetity (5).
geometry. So our natural direction is to the righihe
Euclidean structure, however, is useful for exampénd

. . (x) =y -
applications. So let us say a few words about it: Example 1.1. Consider the functlonf (the i-th

coordinate). The linear functiofiX (the differential ofX )

. n . i
Remark 1.0.  Euclidean geometry. IR~ considered as applied to an arbitrary vectd? is simply N .From these
an affine space we can already do a good deal ahggy.

For example, we can consider lines and planes,qaiadric €xamples follows that we can rewrfll as

surfaces like an ellipsoid. However, we cannot uiscsuch & = of . of " 1
things as “lengths”, “angles” or “areas” and “volesi. To be _Q X"+t X" X @
able to do so, we have to introduce some more itefis, which is the standard form. Once again: the patiéaivatives

makingD "a Euclidean space. Namely, we define the length

1 4y2
in (1) are just the coefficients (depending 501; ax, dx”, ...

— 1 n
ofavectora_(a SIRL )to be

are linear functions giving on an arbitrary vectr its
— 1y2 ny2 1 2
|al '_\/(a) tot@) (@) coordinatesh LT respectively. Hence
After that we can also define distances betweemtpoas
follows: of
AR = =— _h+
d(A B)=|AB] ) df () =B 9 = 521
One can check that the distance so defined possesseral of .,
properties that we expect: is it always non-negadind equals X" h, (2)
zero only for coinciding points; the distance frénto B is the
same as that from B t(0)| AAESém;ngtrﬁ; éls:)-,glorcmpéemts, A Theorem 1.7. Suppose we have a parametrized curve
B and C, we have ( )=d(AC)+d(C,B) (the t— x(t) ) 00" t=t, .
“triangle inequality”). To define angles, we fiistroduce the passing through at and with the
scalar product of two vectors , X(t,) =v
1 nn velocity vector Then
(a,b)=ab +...+a'b 3 df (x(t))
= (aa) T(to) =0, f(x,) =df (x)(v) @)
Thus ' . The scalar product is also denote by dot:

a'b:(a'b), and hence is often referred to as the “d®&roof. Indeed, consider a small increment of the paramet

product” . Now, for nonzero vectors, we define thegle ¢ - +
between them by the equality b At, Where A= 0 on the other hand, we

f (% +h) = f(xo) =df (xo)(h) + B(N) |

have for an
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arbitrary vectorh , Where A(h) - 0 when h-0 . that now the differential of a maE U 0" ata pointx

Combining it together, for the increment Jf(x(t)) we Wwill be a linear function taking vectors in" to vectors in
obtain

f(x(t, +At) — F(X,) U ™ (instead of. ) . For an arbitrary vecto "

=df (%) (VAL + a (At)At) F(x+h)=F(x)+dF(x)(h)
+BU.At +a (At)AL).[ut +a (At)AL| . Bh)|h (3)
= df (%) (0)-At+ y(AHAL Where ph) -0 when h-0  we have
dF =(dF*,....dF"™) 4
For a certainy(At) such thaty(At) - OWhen At - 0 oF oF
f (%) dF =—dx' +...+ —dx"
(we used the linearity og ). By the definition, this ox ox"
means that the derivative o# (x(®) at t=t is exactly a_Fl oF* v
T |(d
df (x,)(v) . The statement of the theorem can be expressed ox ox .
by a simple formula: = e e (4
dxO) _of o, L - F" oE™ | ok
dt o0x 0x axl X"

To calculate the value Oqlf ata pointxo on a given vector !N this matrix notation we have to write vectors \&stor-
t columns.
U one can take an arbitrary curve passing Throﬁ@h&t 0

. . 1) .
with U as the velocity vector atl0 and calculate the usualTheorem 1.9. For an arbitrary parametrized CUF\%;) In

derivative of | X)) 415G o", tr:]e differential of a  mag- ‘Y ~ U™ (where
U oo ) maps the velocity vecto?((t) to the velocity
Theorem 1.8. For functionsf ,9:U -0 ,U Do, vector of the curveF(X(t)) in U i
d(f +g)=df +d 1 dF (x(t :
(1 vg)=ci +do W FEO - grxopoay @
d(fg)=df.g+ f.dg (2) dt

Proof. By the definition of the velocity vector,
Proof. Consider an arbitrary poin)§0 and an arbitrary vector

X(t + At) = x(t) + X(t).At + o (At)At 2

v stretching from it. Let a curvex(t) be such that ( )At ®) 0 ®) (A 2)
X(t,) = X, X(t,) =v Wherea( ) - whent - 0. By the definition of the

0 and "0 . differential,

d(f +9)(%)() :%u (X() + g(x(t))) FOxth) =F()+dF(() +AMh  (3)

Hence Where'B(h) -0 when N = O we obtain

t=t, .
at and

d(fg) (%)) :%(f (x®)g(x(1)))

att =t Formulae (1) and (2) then immediately follow from
the corresponding formulae for the usual derivativew,
almost without change the theory generalizes tcctfans

taking values in 0™ instead of- . The only difference is
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F(X(t +At)) = F(x+ X(t).At + a(At)At) dF = g_; ol 4+ g_F o "
h
= F(X) + dF (X)(X(t)At + a(At)At) + dG ——yldyl +. y , @
,B(X(t)At + O'(At)At) X(t)At +0'(At)At‘ Then the cha|n rule CanabGe expressed as follows:
d(GOF)—idF1+ +7d|:m (3)
' yl ay"

= F(X) +dF ()(x(t)At + y(At)At where OF' are. taken flom (D). In other words, 1 get
For someV(At) -0 when At S 0_ This precisely means d(GOF) we have to substitute into (2) the expression for

{ I
- dy’ =drF from (3). This can also be expressed by the
that IF ) X(1) s the velocity vector of M as every following matrix formula:
vector attached to a point can be viewed as thecitglvector
of some curve passing through this point, this tbeogives a

. . . 1 1
clear geometric picture diF as a linear map on vectors. oG 9G \(oF* oF!

oyt oY || axt x| X
d(GoF)=| .. .. .. e (4
aGP 9GP || oF™ oF™ | dX’
(open ayt ay™ JLaxt TToax"
domains). LetF x> y=F(X) . Then the differential of
the composite ma@OF U - W is the composition of the ie., if dG and dF are expressed by matrices of partial

Theorem 1.10 Suppose we have two maEs:U -V and
GV - W, vuootvooTwooP

where

differentials of F and G derivatives, thend(GOF) is expressed by the product of
d(GoF)(x) = dG(y)odF (x) (4) these matrices. This is often written as
Proof. We can use the description of thd 9z2& 97 E 0z

m

differential .Consider a curv%((t) in 0" with the velocity X ax" ay' oy

vector X, Basically, we need to know to which vectorih "

d(GoF) 0z° 0z° 0z° 0z’

the curve

it is taken by

= ox" ox" ay't oy"
(GoF)(x(t) G(F(X(t)). By the same theorem, it equals y y
the image undefG of the Anycast Flow vector to the curve ﬁ ayl
Teees
F(x(t)) in"™, Applying the theorem once again, we see 0x ox"
that the velocity vector to the cur\}é (x(1)) is the image oo ! (5)
. aym aym
under AF  of the  vector X(t) . Hence ot ox"
) = \ ‘ o}
d(GoF)(x) = dG(dF (x)) for an arbitrary vectoX . ' i
0z" & 0z¥ oy ()
Corollary 1.0. If we denote coordinates i " by O0X° = 0y' 0X
n m m
(Xl""’x )and in mby (yl""’y ) and write Where it is assumed that the dependencey&JD on
xoo*" is given by the mapF , the dependence &#00°
yoo™. . G
on is given by the map~’ and the dependence of

z0O0 P on xOO nis given by the compositioﬁso': .
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N . n . From where it follows that these vectors make dsbasall
Definition 1.6. Consider an open domath U7 consider ] o -0 o )
n points except for the origin (whefe=Y). It is instructive to

also another copy of ', denoted for distinction ¥, with Sketch a picture, drawing vectors corresponding fmint as

: Ly . 6>/ ,6>/
the standard coordmatcgy1 . A system Ef,c\:?ordﬂatesstarting from that point. Notice that or’ /0¢ are,

in the open Somalrp 's given by a map respectively, the velocity vectors for the cunes” x(r.¢)

n
Wherev Hy is an open domain 0@ Y, such that the (@ =@, fixed) and @ X(r, @) (r=r, fixed) We
following three conditions are satisfied : '

can conclude that for an arbitrary curve given iolap
Q) Fis smooth;

(2) F isinvertible: coordinates the velocity vector will have compose%’m
F1:U LV . er::ay ,e¢::ay :
(3) Is also smooth if as a basis we take or o
The coordinates of a poir‘?ﬂDU in this system are the X=€ l’+e¢¢ (5)
_ F(x)00" e
standard coordinates of Y A characteristic feature of the basis'  is that it is not
In other words, “constant” but depends on point. Vectors “stuckptmints”
F: (yl__,y”)H X = x(yl___,y” ) (1] when we consider curvilinear coordinates.
n
Here the variableéyl""y ) are the “new” coordinates ofProposition  1.3. The velocity vector has the same
the pointX appearance in all coordinate systems.
Proof. Follows directly from the chain ruéad the

2 . :
Example 1.2. Consider a curve iR specified in polar transformation law for the bas% .In particular, the elements

coordinates as g = ay _

X({t):r=r(t),¢=90() @ of the basis 0X' (originally, a formal notation) can be
, ) ng X(t) understood directly as the velocity vectors of tioerdinate

We can simply use the chain rule. The a{? can be i o n i

considered as the composition of the mapises X = X( reeesX ) (all coordinates buX are fixed).

te(r(t), o). (r.9)> x(r.¢) Then, by the chain rule Since we now know how to handle velocities in adsjt

coordinates, the best way to treat the differemiala map
we have

- dx_oxdr oxdg ox: 0x FiO" 0" by its action on the velocity vectors. By
X=——=——t—— = =—rt_—¢ (2) definition, we set

dt ordt 9g dt or 0g
- aFx): X ) EE )

Here I' and ¢ are scalar coefficients depending &n

zy ay
whence the partial derivative or o¢ are vectors

Now dF (XO) is a linear map that takes vectors attached to a

n m
) 2 o point X, LU to vectors attached to the poiﬁt(x) Al
depending on point inl ©. We can compare this with the oF oF
o '+ : dF:_lXm+"'+_nan
formula in the “standard” coordinates>:( —exXr&y . 0x 0X
6>/ 0 oF' OF*'
: o’ /op . .. Fem |
Consider the vectors . Explicitly we have ox:  ox dx
0X :
a_:(cos¢’5”.¢ ) (3) (q,,qn) ......... | (2
ar oF™ oF™ |l dx"
X H Al T A e
— =(-rsing,r cosp ) 4 oxt  ox"
0¢ In particular, for the differential of a functionevalways have
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D<)

We write 4

of of

% Ll Ve " 3 Let P be a rational prime and Iet
i for Zp

Where X are arbitrary coordinates. The form of the

differential does not change when we perform a ghaof ¢(p) = p-loverD We wish to show that O = [Z]
coordinates. P_1

df =

or this section. Recall thatK has degree

Note thatZ is a root of X * and thus is an algebraic

integer; slnceoK is a ring we have that [Z]
give a proof without assuming unique factorlzat([fndeals

2
Example 1.3  Consider a 1l-form inJ given in the
standard coordinates:

—_ j
A =-ydx + xdy In the polar coordinates we will have We begin with some norm and trace comf)utanons Léte
X=rCcosg . y=r sinp hence an integer. it} is not divisible by P> thenZ is a primitive

. ' th

dx = cosgdr —r singdg P" oot of unity, and thus its conjugates are

— i 2 p-1
dy =singdr +r cospdg ¢¢" k" Therefore
Substituting intoA, we get _
A=-rsing (cospdr —r sirpdg Tr, (N =¢+P+. .+ =0 (()-1=-1
+ i + i I =

r:05¢2(5|r¢dr r C0¢d¢2 ) if P does divide!’ then ¢'=1 so it has only the one
=r?(sing+cos¢ Yg =rdg . Tre,. (¢')=p-1

conjugate 1, and By linearity of the

— 2 '
Hence A=Td% is the formula for A in the polar trace, we find that
coordinates. In particular, we see that this isragal-form, a TrK/u (1—() :TrK/u (1—(2):
linear combination of the differentials of coordies with N
functions as coefficients. Secondly, in a more epgal way, =Tr,,, (1-{"7)=p

we can define a 1-form in a domali'h as a linear function on - .
We also need to compute the normlon . For this, we use

vectors at every point of U ' the factorization
W) =W +..+wu", @ XPL+XP2 4+ +1=0 (x)

— i :ay . — 2 p-1y.
If v= ZQU , Where © 0X' | Recall that the =(X=)(x=¢7)..(x=¢"7);
differentials of functions were defined as lineandtions on Plugging in X = 1 shows that
vectors (at every point), and -1 1— 1- 7Pt
ooy -ae[ 2] o (1—(51')5)( %) =¢7) .

ax ! . Since the are the conjugates &l— 'this shows
at every point Ny, (1-¢)=
X, that =~ /" P The key result for determining the
N Oy . .
Theorem 1.9. For arbitrary 1-form? and pathy, the M9 of integers " is the following.
ICU LEMMA 1.9

integral ¥  does not change if we change parametrization of (1_Z)OK nll =pJ

Y orovi i i i -
provide the orientation remains the same. Proof. We saw above thaP is a multiple of1=¢) in

Ny OX
<CU( (1)), d_t> <C()(X(t(t )))’d_t> O ' so the |nclu5|on(1 ¢)Oc nb L pd is immediate.
Proof: Consider and Suppose now that the inclusion is strict. Since

As -
dt (l Z)OK nO is an ideal of’ containing P and P is

<w(x(t(t'))),%> Kw( (t(t))), —> <=
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a maximal ideal of , we must have(l_g)OK nd =0

Thus we can write 1=a(1-{)

For someaDOK' That is,l_Z is a unit inOK'
COROLLARY 11 For any atlO,
Tre, (A-¢)a)0 pD

PROOF. We have

Tre, (A=a) =0, (A-{Ja)+ .. +0,, (=7 1)
=0,1-)oy(@)+..40,,(0-{ Y, @)
=1-Q)oy(@)+ ..+ -C" ), @)

Where theai are the complex embeddings 6t (which we

are really viewing as automorphisms Kf) with the usual

ordering. Furthermore],'_ZJ is a multiple of:l‘_Z in OK

for every ) #0. Thus

e (@@=)BA=4)0, Since the trace is also at

rational integer.

PROPOSITION 1.4 Let P be a prime number and let

K=0({,)

th
be the P cyclotomic field. Then

O =U[¢) IR (R): - 1Ly lf2
integral basis forOK.

PROOF. Let a0 and write

a=gtal t.ta, 07 a0l

a(l-0)=8,1-{)+a, ~{?)+ .

+a, ,(¢"7 ="
By the linearity of the trace and our above caliois we
find that Ty, (@@=0)) = pay We also have

Tre,, (@@@-¢))0pd, o a, U0
algebraic integer

@-a)*=aral+ora, L7 o o

-1 - Zp—l
algebraic integer sincg is. The same argument as

above shows tha?1 ud,

that all of theai are inl! . This completes the proof.

Next consider the

K =0

O .
Example 1.4  Let , then the local ring (P is

simply the subring ofD of rational numbers with

. . . [
denominator relatively prime t® . Note that this ring (P
: U . 0
is not the ring P of P _adic integers; to get Pone must

[
complete (P The usefulness O?K‘p comes from the fact
that it has a particularly simple ideal structuret Ape any

O,.

proper ideal ofOK'p and consider the ideg} n OK of

a=(an0O)0 ,; That is, that@ is

generated by the elements dfin an OK' It is clear from

the definition of an ideal tha(f'1 U(@an O )OK’F" To prove

the other inclusion, le! be any element oft. Then we can
write 9 =By Where'BDOK and yup. In particular,
pla (since'B/yDa and @ is an ideal), SGEDOK and
yop. o B0an Q. Since1/yDO
hat & =B1yU0(@nO)0 ,,

We claim that

K:P* this implies
as claimed.We can use
this fact to determine all of the ideals (())f<"3' Let & be any
ideal of ~X:Pand consider the ideal factorization %‘fﬂ OK

anO,=pb

O
in TK® write it as For somen and some

ideal ™' relatively prime to P- we claim first that

0O, = O p- We now find that
a=(@n0Q)o , = pnbOK,p = pnOK,p

bO,

Since
n

. . @)
K:P* Thus every ideal oPK'p has the formP ~X:® for
some' it follows immediately that ¥:Pis noetherian. It is

"0
also now clear thatp K:Pis the unique non-zero prime

@ . .
K.p inclusion

Furthermore, the
O, . nO, =p, . .
ep K.p k=P this map is

al SO0

also surjection, since the residue class of KiP (with
-1
a b0 ang BV Py is the image ma'B in Ocrp: which

ideal in

O = O,/ PO

K:P Sinc

makes sense smcé is invertible in _</P" Thus the map is

and continuing in this way we find an isomorphism. In particular, it is now abundamiyar that

every non-zero prime ideal oQ“’ is maximal. To show
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o, . o _ ~In Point Pattern Analysis the object of interesthis spatial
that —<'Pis a Dedekind domain, it remains to show that it I9cation of cancer events as the type of cancer thed
numbers associated with Mortality. Objective isstady the
o, - spatial distribution and develop testing hypothesisut the
polynomial with coefficients in <P’ write this polynomial Observed and forecast pattern. _ .

The model uses the geostatistics techniques tonedefi
N a, , . .
XA T 2 homogeneous bahavior on the spatial correlationa dat
as B By With a, 0O, and Sstructure in geolocation.

integrally closed inK . So let yuK be a root of a

B DOK—p' Set'g = Boby+ - Multiplying by B" we Spatial Autocorrelation is the spatial dependenaged on
_ By . ) ) _computation framework, this is to measure relatigms
find that is the root of a monic polynomial withpetween two random variables, but are applyingcthecept

. O ByuoQy; . B0p, on multiple variable the distinguish Brain Tumor pEsg,
coefficients in Thus since we have Nervous Cancer Types, Location and Influence Factor
Byl B=y00, 1. O

K.pis integrally close inK. Venfymg spatial d_ependency varies based ~on coatper
analysis of population sample and nearest points.

COROLLARY 1.2. Let K be a number field of degre@
N, (@O.)=|N,, (a

and letd be inoK then < (a0k) ‘ e )‘

PROOF. We assume a bit more Galois theory thaal det

Delaunay Segrnent Length

Ang=133.17, =081
o,

min=22.07. max=269.42 urr)

this proof. Assume first thalt< /0 is Galois. Let? be an
Gal(K /[). .

element  of It is clear that
(0,)/0(@) D0y e T(O) =0k

N;(/L (o(a)Oy) = N|l</u (aOy)

this shows <

that . Taking the product Dt
over all oQGa(K/m), we have Fig 1 : Delaunay Tetrahedra Volume
Ny, (N, (@)O() = Ny, (@O,)" Since Ny, (@) is

a rational integer ané) K is a freé) -module of rank" . R

Oc /Ny (@)Ox Will have orderNK’L (@)™ therefore //

N;(/D (N (@)Og) = Ny,- (@0Oy)" s /
This completes the proof. In the general caselldie the 0
Galois closure oK and seI[L: K] =m o .

(] 20 0 60 0 100 120 140 180 fed 200

A. Spatial Analysis

Spatial Analysis of people suffering from CanceMNarth  Fig. 2: F Function ( Cumulative Sample Point teaNst Cell
America and the trend in Geo Location. Spatial Asislis to  pjstances)

measure properties and relationship with spatiehllpation
and the events like Brain Cancer in America. Thed@ho
processes define the distribution of spread of eaimcspace. ' =

0

Taxonomy used are Events, Point Patterns to express o //
occurrences of Cancer patient as points in spatslas Point  _° /
Processes and give the localization coordinatess $tudy ot /
developed the modelling process for exploratorylyeig to 0
provide graphs, maps and spatial patterns. ’

—3

] a0 0 60 a0 10 120 140 1B0 180 200
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Fig 3: G Function (Cumulative Nearest Neighbor

Distribution)
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Fig 4: K Function (Cumulative Density)

Mear Meighbors

1000

05 03

0

"

Fig 10 : North America Cancer patient distribution
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Fig 7 : Voronio Domain
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2 .6 2
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Classification of Brain Cancer
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Fig. 12 Classification of Brain Cancer

IV. CONCLUSIONS

Cancer patients in America is reducing and espgdsahin
Cancer percentage is in control and not increasmapared
to Lung Cancer. Next work is to layout the framekvéor
epidemic models
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